
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9147990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 2013, 87, 1315-1530.	1.9	1,089
2	Managing the challenge of chemically reactive metabolites in drug development. Nature Reviews Drug Discovery, 2011, 10, 292-306.	21.5	382
3	Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): an open-label, randomised, phase 3 trial. Lancet Oncology, The, 2014, 15, 829-840.	5.1	296
4	Idiosyncratic Adverse Drug Reactions: Current Concepts. Pharmacological Reviews, 2013, 65, 779-808.	7.1	253
5	Human leukocyte antigen (HLA)-B*57:01-restricted activation of drug-specific T cells provides the immunological basis for flucloxacillin-induced liver injury. Hepatology, 2013, 57, 727-739.	3.6	212
6	Hypersensitivity Reactions to Carbamazepine: Characterization of the Specificity, Phenotype, and Cytokine Profile of Drug-Specific T Cell Clones. Molecular Pharmacology, 2003, 63, 732-741.	1.0	211
7	Recognition of Sulfamethoxazole and Its Reactive Metabolites by Drug-Specific CD4+ T Cells from Allergic Individuals. Journal of Immunology, 2000, 164, 6647-6654.	0.4	206
8	Characterization of drug-specific T cells in lamotrigine hypersensitivity. Journal of Allergy and Clinical Immunology, 2003, 111, 1393-1403.	1.5	198
9	Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nature Reviews Drug Discovery, 2020, 19, 131-148.	21.5	153
10	Challenges and approaches for the development of safer immunomodulatory biologics. Nature Reviews Drug Discovery, 2013, 12, 306-324.	21.5	138
11	The danger hypothesis—potential role in idiosyncratic drug reactions. Toxicology, 2002, 181-182, 55-63.	2.0	133
12	T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cellular and Molecular Life Sciences, 2010, 67, 4171-4184.	2.4	131
13	Covalent Binding of the Nitroso Metabolite of Sulfamethoxazole Leads to Toxicity and Major Histocompatibility Complex-Restricted Antigen Presentation. Molecular Pharmacology, 2002, 62, 628-637.	1.0	129
14	Immunological Principles of Adverse Drug Reactions. Drug Safety, 2000, 23, 483-507.	1.4	127
15	Cellular disposition of sulphamethoxazole and its metabolites: implications for hypersensitivity. British Journal of Pharmacology, 1999, 126, 1393-1407.	2.7	126
16	Metabolic activation in drug allergies. Toxicology, 2001, 158, 11-23.	2.0	121
17	Activation of T cells by carbamazepine and carbamazepine metabolites. Journal of Allergy and Clinical Immunology, 2006, 118, 233-241.	1.5	121
18	Induction of Metabolism-Dependent and -Independent Neutrophil Apoptosis by Clozapine. Molecular Pharmacology, 2000, 58, 207-216.	1.0	120

#	Article	IF	CITATIONS
19	Cellular and Molecular Pathophysiology of Cutaneous Drug Reactions. American Journal of Clinical Dermatology, 2002, 3, 229-238.	3.3	117
20	Antigenicity and immunogenicity of sulphamethoxazole: demonstration of metabolism-dependent haptenation and T-cell proliferation in vivo. British Journal of Pharmacology, 2001, 133, 295-305.	2.7	115
21	Sulfamethoxazole and Its Metabolite Nitroso Sulfamethoxazole Stimulate Dendritic Cell Costimulatory Signaling. Journal of Immunology, 2007, 178, 5533-5542.	0.4	111
22	Stimulation of human T cells with sulfonamides and sulfonamide metabolites. Journal of Allergy and Clinical Immunology, 2010, 125, 411-418.e4.	1.5	109
23	Metabolism of Lamotrigine to a Reactive Arene Oxide Intermediate. Chemical Research in Toxicology, 2000, 13, 1075-1081.	1.7	107
24	Generation and characterization of antigen-specific CD4+, CD8+, and CD4+CD8+ T-cell clones from patients with carbamazepine hypersensitivity. Journal of Allergy and Clinical Immunology, 2007, 119, 973-981.	1.5	104
25	T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nature Communications, 2021, 12, 2055.	5.8	102
26	Mass Spectrometric Characterization of Circulating and Functional Antigens Derived from Piperacillin in Patients with Cystic Fibrosis. Journal of Immunology, 2011, 187, 200-211.	0.4	101
27	Investigation of toxic metabolites during drug development. Toxicology and Applied Pharmacology, 2005, 207, 425-434.	1.3	94
28	Influence of reduced glutathione on the proliferative response of sulfamethoxazole-specific and sulfamethoxazole-metabolite-specific human CD4+ T-cells. British Journal of Pharmacology, 2001, 132, 623-630.	2.7	88
29	Characterization of amoxicillin―and clavulanic acidâ€specific T cells in patients with amoxicillinâ€clavulanate–induced liver injury. Hepatology, 2015, 62, 887-899.	3.6	83
30	Drug bioactivation and protein adduct formation in the pathogenesis of drug-induced toxicity. Chemico-Biological Interactions, 2011, 192, 30-36.	1.7	82
31	Metabolism-Dependent Neutrophil Cytotoxicity of Amodiaquine: A Comparison with Pyronaridine and Related Antimalarial Drugs. Chemical Research in Toxicology, 1998, 11, 1586-1595.	1.7	79
32	Direct Evidence for the Formation of Diastereoisomeric Benzylpenicilloyl Haptens from Benzylpenicillin and Benzylpenicillenic Acid in Patients. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 841-849.	1.3	78
33	Multiple Adduction Reactions of Nitroso Sulfamethoxazole with Cysteinyl Residues of Peptides and Proteins: Implications for Hapten Formation. Chemical Research in Toxicology, 2009, 22, 937-948.	1.7	77
34	The Generation, Detection, and Effects of Reactive Drug Metabolites. Medicinal Research Reviews, 2013, 33, 985-1080.	5.0	73
35	Characterization of the Antigen Specificity of T-Cell Clones from Piperacillin-Hypersensitive Patients with Cystic Fibrosis. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 597-610.	1.3	72
36	Selective Haptenation of Cellular or Extracellular Protein by Chemical Allergens:Â Association with Cytokine Polarization. Chemical Research in Toxicology, 2005, 18, 375-381.	1.7	70

#	Article	IF	CITATIONS
37	Characterization of Sulfamethoxazole and Sulfamethoxazole Metabolite-Specific T-Cell Responses in Animals and Humans. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 229-237.	1.3	68
38	Synthesis and reactions of nitroso sulphamethoxazole with biological nucleophiles: Implications for immune mediated toxicity. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 1511-1516.	1.0	67
39	Plasma Cysteine Deficiency and Decreased Reduction of Nitrososulfamethoxazole with HIV Infection. AIDS Research and Human Retroviruses, 2000, 16, 1929-1938.	0.5	62
40	Characterization of p-Phenylenediamine–Albumin Binding Sites and T-Cell Responses to Hapten-Modified Protein. Journal of Investigative Dermatology, 2010, 130, 732-742.	0.3	62
41	Drug hypersensitivity reactions in skin: understanding mechanisms and the development of diagnostic and predictive tests. Toxicology, 2004, 194, 179-196.	2.0	60
42	Role of bioactivation in drug-induced hypersensitivity reactions. AAPS Journal, 2006, 8, E55-E64.	2.2	60
43	The Development of In Vitro Culture Methods to Characterize Primary T-Cell Responses to Drugs. Toxicological Sciences, 2012, 127, 150-158.	1.4	60
44	In silico analysis of HLA associations with drug-induced liver injury: use of a HLA-genotyped DNA archive from healthy volunteers. Genome Medicine, 2012, 4, 51.	3.6	58
45	Are Chemically Reactive Metabolites Responsible for Adverse Reactions to Drugs?. Current Drug Metabolism, 2002, 3, 351-366.	0.7	56
46	Definition of the Nature and Hapten Threshold of the β-Lactam Antigen Required for T Cell Activation In Vitro and in Patients. Journal of Immunology, 2017, 198, 4217-4227.	0.4	54
47	A chemically inert drug can stimulate T cells in vitro by their T cell receptor in non-sensitised individuals. Toxicology, 2004, 197, 47-56.	2.0	53
48	Drug Antigenicity, Immunogenicity, and Costimulatory Signaling: Evidence for Formation of a Functional Antigen through Immune Cell Metabolism. Journal of Immunology, 2010, 185, 6448-6460.	0.4	53
49	Update on Advances in Research on Idiosyncratic Drug-Induced Liver Injury. Allergy, Asthma and Immunology Research, 2016, 8, 3.	1.1	52
50	T-Cells from HLA-B*57:01+ Human Subjects Are Activated with Abacavir through Two Independent Pathways and Induce Cell Death by Multiple Mechanisms. Chemical Research in Toxicology, 2013, 26, 759-766.	1.7	51
51	Report from the National Institute of Allergy and Infectious Diseases workshop on drug allergy. Journal of Allergy and Clinical Immunology, 2015, 136, 262-271.e2.	1.5	51
52	β-Lactam Antibiotics Form Distinct Haptenic Structures on Albumin and Activate Drug-Specific T-Lymphocyte Responses in Multiallergic Patients with Cystic Fibrosis. Chemical Research in Toxicology, 2013, 26, 963-975.	1.7	50
53	Negative Regulation by PD-L1 during Drug-Specific Priming of IL-22–Secreting T Cells and the Influence of PD-1 on Effector T Cell Function. Journal of Immunology, 2014, 192, 2611-2621.	0.4	50
54	Investigation of the immunogenicity of diclofenac and diclofenac metabolites. Toxicology Letters, 2007, 168, 45-50.	0.4	49

#	Article	IF	CITATIONS
55	The importance of hapten–protein complex formation in the development of drug allergy. Current Opinion in Allergy and Clinical Immunology, 2014, 14, 293-300.	1.1	49
56	Activation of T-Cells from Allergic Patients and Volunteers by p-Phenylenediamine and Bandrowski's Base. Journal of Investigative Dermatology, 2008, 128, 897-905.	0.3	48
57	"Danger―Conditions Increase Sulfamethoxazole-Protein Adduct Formation in Human Antigen-Presenting Cells. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 372-381.	1.3	48
58	Amoxicillin and Clavulanate Form Chemically and Immunologically Distinct Multiple Haptenic Structures in Patients. Chemical Research in Toxicology, 2016, 29, 1762-1772.	1.7	48
59	Multiple drug hypersensitivity: normal Treg cell function but enhanced <i>in vivo</i> activation of drugâ€specific T cells. Allergy: European Journal of Allergy and Clinical Immunology, 2012, 67, 58-66.	2.7	47
60	Carbamazepine-induced acute liver failure as part of the DRESS syndrome. International Journal of Clinical Practice, 2005, 59, 988-991.	0.8	45
61	Reactive metabolites and their role in drug reactions. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 317-325.	1.1	44
62	Enhanced antigenicity leads to altered immunogenicity in sulfamethoxazole-hypersensitive patients with cystic fibrosis. Journal of Allergy and Clinical Immunology, 2011, 127, 1543-1551.e3.	1.5	43
63	Drugâ€specific CD4 ⁺ Tâ€cell immune responses are responsible for antituberculosis drugâ€induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. British Journal of Dermatology, 2017, 176, 378-386.	1.4	42
64	Activation of Human Dendritic Cells by p-Phenylenediamine. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 885-892.	1.3	41
65	A Mechanistic Investigation into the Irreversible Protein Binding and Antigenicity of <i>p</i> -Phenylenediamine. Chemical Research in Toxicology, 2009, 22, 1172-1180.	1.7	41
66	Promiscuous T-cell responses to drugs and drug-haptens. Journal of Allergy and Clinical Immunology, 2015, 136, 474-476.e8.	1.5	41
67	The Effect of Inhibitory Signals on the Priming of Drug Hapten–Specific T Cells That Express Distinct Vβ Receptors. Journal of Immunology, 2017, 199, 1223-1237.	0.4	41
68	Detection of Primary T Cell Responses to Drugs and Chemicals in HLA-Typed Volunteers: Implications for the Prediction of Drug Immunogenicity. Toxicological Sciences, 2016, 154, 416-429.	1.4	40
69	The roles of drug metabolism in the pathogenesis of T-cell-mediated drug hypersensitivity. Current Opinion in Allergy and Clinical Immunology, 2008, 8, 299-307.	1.1	39
70	Role of protein haptenation in triggering maturation events in the dendritic cell surrogate cell line THP-1. Toxicology and Applied Pharmacology, 2009, 238, 120-132.	1.3	39
71	Detection of Drug Bioactivation in Vivo: Mechanism of Nevirapine–Albumin Conjugate Formation in Patients. Chemical Research in Toxicology, 2013, 26, 575-583.	1.7	39
72	Immunopharmacology of hypersensitivity reactions to drugs. Current Allergy and Asthma Reports, 2003, 3, 22-29.	2.4	38

#	Article	IF	CITATIONS
73	Characterization of Drug-Specific Signaling Between Primary Human Hepatocytes and Immune Cells. Toxicological Sciences, 2017, 158, 76-89.	1.4	37
74	Dapsone―and nitroso dapsoneâ€specific activation of T cells from hypersensitive patients expressing the risk allele HLAâ€B*13:01. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1533-1548.	2.7	37
75	HLA Restriction of Carbamazepine-Specific T-Cell Clones from an HLA-A*31:01-Positive Hypersensitive Patient. Chemical Research in Toxicology, 2014, 27, 175-177.	1.7	36
76	Measurement of CD4+ and CD8+ T-Lymphocyte Cytokine Secretion and Gene Expression Changes in p-Phenylenediamine Allergic Patients and Tolerant Individuals. Journal of Investigative Dermatology, 2010, 130, 161-174.	0.3	35
77	Manipulation of the N-alkyl substituent in amodiaquine to overcome the verapamil-sensitive chloroquine resistance component. Antimicrobial Agents and Chemotherapy, 1996, 40, 2345-2349.	1.4	34
78	β-Lactam hypersensitivity involves expansion of circulating and skin-resident TH22Âcells. Journal of Allergy and Clinical Immunology, 2018, 141, 235-249.e8.	1.5	34
79	Current status of GV1001 and other telomerase vaccination strategies in the treatment of cancer. Expert Review of Vaccines, 2010, 9, 1007-1016.	2.0	33
80	Nonimmediate Î ² -lactam reactions in patients with cystic fibrosis. Current Opinion in Allergy and Clinical Immunology, 2012, 12, 369-375.	1.1	33
81	Auto-oxidation of Isoniazid Leads to Isonicotinic-Lysine Adducts on Human Serum Albumin. Chemical Research in Toxicology, 2015, 28, 51-58.	1.7	33
82	Exosomal Transport of Hepatocyteâ€Derived Drugâ€Modified Proteins to the Immune System. Hepatology, 2019, 70, 1732-1749.	3.6	33
83	Human leukocyte antigen and idiosyncratic adverse drug reactions. Drug Metabolism and Pharmacokinetics, 2017, 32, 21-30.	1.1	32
84	From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicological Sciences, 2017, 155, 420-431.	1.4	31
85	HLA-B*13 :01 Is a Predictive Marker of Dapsone-Induced Severe Cutaneous Adverse Reactions in Thai Patients. Frontiers in Immunology, 2021, 12, 661135.	2.2	29
86	The chemical, genetic and immunological basis of idiosyncratic drug–induced liver injury. Human and Experimental Toxicology, 2015, 34, 1310-1317.	1.1	28
87	Activation of Flucloxacillin-Specific CD8+ T-Cells With the Potential to Promote Hepatocyte Cytotoxicity in a Mouse Model. Toxicological Sciences, 2015, 146, 146-156.	1.4	27
88	Metabolic and Chemical Origins of Cross-Reactive Immunological Reactions to Arylamine Benzenesulfonamides: T-Cell Responses to Hydroxylamine and Nitroso Derivatives. Chemical Research in Toxicology, 2010, 23, 184-192.	1.7	25
89	Mechanisms leading to T-cell activation in drug hypersensitivity. Current Opinion in Allergy and Clinical Immunology, 2018, 18, 317-324.	1.1	25
90	Reactive metabolites and their role in drug reactions. Current Opinion in Allergy and Clinical Immunology, 2001, 1, 317-325.	1.1	23

#	Article	IF	CITATIONS
91	Characterization of Peroxidases Expressed in Human Antigen Presenting Cells and Analysis of the Covalent Binding of Nitroso Sulfamethoxazole to Myeloperoxidase. Chemical Research in Toxicology, 2015, 28, 144-154.	1.7	22
92	Investigation of the immunogenicity of p-phenylenediamine and Bandrowski's base in the mouse. Toxicology Letters, 2009, 185, 153-159.	0.4	21
93	Abacavir Forms Novel Cross-Linking Abacavir Protein Adducts in Patients. Chemical Research in Toxicology, 2014, 27, 524-535.	1.7	21
94	Immune dysregulation increases the incidence of delayedâ€ŧype drug hypersensitivity reactions. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 781-797.	2.7	21
95	Identification of Flucloxacillin-Haptenated HLA-B*57:01 Ligands: Evidence of Antigen Processing and Presentation. Toxicological Sciences, 2020, 177, 454-465.	1.4	21
96	State-of-the-art and new options to assess T cell activation by skin sensitizers: Cosmetics Europe Workshop. ALTEX: Alternatives To Animal Experimentation, 2018, 35, 179-192.	0.9	21
97	The skin as a metabolic and immune-competent organ: Implications for drug-induced skin rash. Journal of Immunotoxicology, 2019, 16, 1-12.	0.9	20
98	Glutathione metabolism in the HaCaT cell line as a model for the detoxification of the model sensitisers 2,4-dinitrohalobenzenes in human skin. Toxicology Letters, 2015, 237, 11-20.	0.4	19
99	Modification of the cyclopropyl moiety of abacavir provides insight into the structure activity relationship between HLAâ€B*57:01 binding and Tâ€cell activation. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 636-647.	2.7	19
100	Characterization of the T-Cell Response in a Patient with Phenindione Hypersensitivity. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 1058-1065.	1.3	18
101	InÂVitro Diagnosis of Delayed-type Drug Hypersensitivity. Immunology and Allergy Clinics of North America, 2014, 34, 691-705.	0.7	18
102	Dapsone and Nitroso Dapsone Activation of NaıÌ^ve T-Cells from Healthy Donors. Chemical Research in Toxicology, 2017, 30, 2174-2186.	1.7	18
103	New Approaches to Investigate Drug-Induced Hypersensitivity. Chemical Research in Toxicology, 2017, 30, 239-259.	1.7	18
104	Drug Metabolite-Specific Lymphocyte Responses in Sulfamethoxazole Allergic Patients with Cystic Fibrosis. Chemical Research in Toxicology, 2010, 23, 1009-1011.	1.7	17
105	Immunoglobulin G1 and immunoglobulin G4 antibodies in multiple sclerosis patients treated with IFNÎ ² interact with the endogenous cytokine and activate complement. Clinical Immunology, 2013, 148, 177-185.	1.4	17
106	<i>In Vitro</i> Priming of NaıÌ^ve T-cells with <i>p</i> -Phenylenediamine and Bandrowski's Base. Chemical Research in Toxicology, 2015, 28, 2069-2077.	1.7	16
107	Application of in Vitro T Cell Assay Using Human Leukocyte Antigen-Typed Healthy Donors for the Assessment of Drug Immunogenicity. Chemical Research in Toxicology, 2018, 31, 165-167.	1.7	16
108	Exposure of mice to the nitroso metabolite of sulfamethoxazole stimulates interleukin 5 production by CD4 T-cells. Toxicology, 2005, 206, 221-231.	2.0	15

#	Article	IF	CITATIONS
109	Immunological principles of T-cell-mediated adverse drug reactions in skin. Expert Opinion on Drug Safety, 2007, 6, 109-124.	1.0	15
110	Towards depersonalized abacavir therapy. Aids, 2015, 29, 2385-2395.	1.0	15
111	Are drug metabolites able to cause T-cell-mediated hypersensitivity reactions?. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 357-368.	1.5	15
112	Detection of drugâ€responsive B lymphocytes and antidrug lgG in patients with βâ€lactam hypersensitivity. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 896-907.	2.7	14
113	Definition of Haptens Derived from Sulfamethoxazole: In Vitro and in Vivo. Chemical Research in Toxicology, 2019, 32, 2095-2106.	1.7	14
114	HLA DRB1*15:01-DQB1*06:02-Restricted Human CD4+ T Cells Are Selectively Activated With Amoxicillin-Peptide Adducts. Toxicological Sciences, 2020, 178, 115-126.	1.4	14
115	Characterization of T-Cell Responses to SMX and SMX-NO in Co-Trimoxazole Hypersensitivity Patients Expressing HLA-B*13:01. Frontiers in Immunology, 2021, 12, 658593.	2.2	14
116	Toxicophores: groups and metabolic routes associated with increased safety risk. Current Opinion in Drug Discovery & Development, 2002, 5, 104-15.	1.9	14
117	Up-Regulation of T-Cell Activation MicroRNAs in Drug-Specific CD4 ⁺ T-Cells from Hypersensitive Patients. Chemical Research in Toxicology, 2018, 31, 454-461.	1.7	13
118	Tolvaptan- and Tolvaptan-Metabolite-Responsive T Cells in Patients with Drug-Induced Liver Injury. Chemical Research in Toxicology, 2020, 33, 2745-2748.	1.7	13
119	Development of an Improved T-cell Assay to Assess the Intrinsic Immunogenicity of Haptenic Compounds. Toxicological Sciences, 2020, 175, 266-278.	1.4	13
120	In-Vitro Approaches to Predict and Study T-Cell Mediated Hypersensitivity to Drugs. Frontiers in Immunology, 2021, 12, 630530.	2.2	13
121	Checkpoint Inhibition Reduces the Threshold for Drug-Specific T-Cell Priming and Increases the Incidence of Sulfasalazine Hypersensitivity. Toxicological Sciences, 2022, 186, 58-69.	1.4	13
122	Characterization of drug-specific lymphocyte responses in a patient with drug-induced liver injury. Journal of Allergy and Clinical Immunology, 2011, 128, 680-683.e5.	1.5	12
123	Activation of carbamazepine-responsive T-cell clones with metabolically inert halogenated derivatives. Journal of Allergy and Clinical Immunology, 2013, 132, 493-495.	1.5	12
124	Oxidative Bioactivation of Abacavir in Subcellular Fractions of Human Antigen Presenting Cells. Chemical Research in Toxicology, 2013, 26, 1064-1072.	1.7	12
125	HLAâ€DQ alleleâ€restricted activation of nitroso sulfamethoxazoleâ€specific CD4â€positive T lymphocytes from patients with cystic fibrosis. Clinical and Experimental Allergy, 2015, 45, 1305-1316.	1.4	12
126	Drugâ€specific Tâ€cell responses in patients with liver injury following treatment with the BACE inhibitor atabecestat. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1825-1835.	2.7	12

#	Article	IF	CITATIONS
127	HLA Class-II‒Restricted CD8+ T Cells Contribute to the Promiscuous Immune Response in Dapsone-Hypersensitive Patients. Journal of Investigative Dermatology, 2021, 141, 2412-2425.e2.	0.3	12
128	Drug-Specific T Cells in An HIV-Positive Patient with Nevirapine-Induced Hepatitis. Antiviral Therapy, 2006, 11, 393-395.	0.6	12
129	Detection of Drug-Responsive T-Lymphocytes in a Case of Fatal Antituberculosis Drug-Related Liver Injury. Chemical Research in Toxicology, 2016, 29, 1793-1795.	1.7	11
130	Identification of drug- and drug-metabolite immune responses originating from both naive and memory T cells. Journal of Allergy and Clinical Immunology, 2017, 140, 578-581.e5.	1.5	10
131	Characterization of amoxicillin and clavulanic acid specific Tâ€cell clones from patients with immediate drug hypersensitivity. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2562-2573.	2.7	10
132	Biopsy Pathology and Immunohistochemistry of a Case of Immuneâ€Mediated Drugâ€Induced Liver Injury With Atabecestat. Hepatology, 2021, 73, 452-455.	3.6	10
133	T cell mediated hypersensitivity to previously tolerated iodinated contrast media precipitated by introduction of atezolizumab. , 2021, 9, e002521.		10
134	Research Highlights: Explanation for <i>HLA-B*57:01</i> -linked immune-mediated abacavir-induced hypersensitivity. Pharmacogenomics, 2012, 13, 1567-1569.	0.6	9
135	HLA-A*33:03-Restricted Activation of Ticlopidine-Specific T-Cells from Human Donors. Chemical Research in Toxicology, 2018, 31, 1022-1024.	1.7	9
136	T-Cell Activation by Low Molecular Weight Drugs and Factors That Influence Susceptibility to Drug Hypersensitivity. Chemical Research in Toxicology, 2020, 33, 77-94.	1.7	9
137	Characterization of Clozapine-Responsive Human T Cells. Journal of Immunology, 2020, 205, 2375-2390.	0.4	9
138	Deciphering Adverse Drug Reactions: <i>In Vitro</i> Priming and Characterization of Vancomycin-Specific T Cells From Healthy Donors Expressing HLA-A*32:01. Toxicological Sciences, 2021, 183, 139-153.	1.4	9
139	Drug haptenâ€specific Tâ€cell activation: Current status and unanswered questions. Proteomics, 2021, 21, e2000267.	1.3	9
140	Mechanisms of drug hypersensitivity in HIV-infected patients: the role of the immune system. Journal of HIV Therapy, 2003, 8, 42-7.	0.6	9
141	Drugs as Haptens, Antigens, and Immunogens. , 2007, , 55-65.		8
142	No Evidence for Drug-Specific Activation of Circulating T Cells from Patients with <i>HLA-DRB1</i> *07:01-Restricted Lapatinib-Induced Liver Injury. Chemical Research in Toxicology, 2016, 29, 2111-2113.	1.7	8
143	Immune drug-induced liver disease and drugs. Current Opinion in Toxicology, 2018, 10, 46-53.	2.6	8
144	Current perspective of the etiopathogenesis of delayed-type, and T-cell–mediated drug-related skin diseases. Journal of Allergy and Clinical Immunology, 2020, 145, 1142-1144.	1.5	8

#	Article	IF	CITATIONS
145	HLA Allele–Restricted Immune-Mediated Adverse Drug Reactions: Framework for Genetic Prediction. Annual Review of Pharmacology and Toxicology, 2022, 62, .	4.2	8
146	Immunological Mechanisms of Drug Hypersensitivity. Current Pharmaceutical Design, 2017, 22, 6734-6747.	0.9	8
147	Effect of Repeated Daily Dosing with 2,4-Dinitrochlorobenzene on Glutathione Biosynthesis and Nrf2 Activation in Reconstructed Human Epidermis. Toxicological Sciences, 2016, 154, 5-15.	1.4	7
148	Cell Membrane Transporters Facilitate the Accumulation of Hepatocellular Flucloxacillin Protein Adducts: Implication in Flucloxacillin-Induced Liver Injury. Chemical Research in Toxicology, 2020, 33, 2939-2943.	1.7	7
149	Drug allergy to CFTR modulator therapy associated with lumacaftor-specific CD4+ T lymphocytes. Journal of Allergy and Clinical Immunology, 2021, 147, 753-756.	1.5	7
150	Drug hypersensitivity. , 2012, , 321-330.		6
151	Assessment of Antipiperacillin IgG Binding to Structurally Related Drug Protein Adducts. Chemical Research in Toxicology, 2017, 30, 2097-2099.	1.7	6
152	Drug hypersensitivity reactions in patients with HIV disease. Expert Review of Clinical Immunology, 2007, 3, 395-410.	1.3	5
153	IL-8 Release from Human Neutrophils Cultured with Pro-Haptenic Chemical Sensitizers. Chemical Research in Toxicology, 2012, 25, 2054-2056.	1.7	5
154	Mechanism-Based Markers of Drug-Induced Liver Injury to Improve the Physiological Relevance and Predictivity of <i>In Vitro</i> Models. Applied in Vitro Toxicology, 2015, 1, 175-186.	0.6	5
155	Drug presentation to T cells. Journal of Allergy and Clinical Immunology, 2005, 115, 876-877.	1.5	4
156	Nonenzymatic Formation of a Novel Hydroxylated Sulfamethoxazole Derivative in Human Liver Microsomes: Implications for Bioanalysis of Sulfamethoxazole Metabolites. Drug Metabolism and Disposition, 2008, 36, 2424-2428.	1.7	4
157	Trimethoprim Stimulates T-Cells through Metabolism-Dependent and -Independent Pathways. Chemical Research in Toxicology, 2011, 24, 791-793.	1.7	4
158	Trimethoprim-induced aseptic meningism. British Journal of Hospital Medicine (London, England: 2005), 2017, 78, 108-109.	0.2	3
159	Characterization of Healthy Donor-Derived T-Cell Responses Specific to Telaprevir Diastereomers. Toxicological Sciences, 2019, 168, 597-609.	1.4	3
160	Extracellular Vesicles from Human Plasma Show a Distinctive Proteome and miRNome Profile in Patients with Severe Cutaneous Adverse Reactions. Chemical Research in Toxicology, 2021, 34, 1738-1748.	1.7	3
161	Pathology of T-cell-mediated drug hypersensitivity reactions and impact of tolerance mechanisms on patient susceptibility. Current Opinion in Allergy and Clinical Immunology, 0, Publish Ahead of Print, .	1.1	3
162	The 2nd International Drug Hypersensitivity Meeting. Expert Opinion on Drug Safety, 2006, 5, 729-734.	1.0	2

#	Article	IF	CITATIONS
163	Immune Mechanisms in Drug-Induced Liver Injury. Methods in Pharmacology and Toxicology, 2018, , 511-531.	0.1	2
164	Update on Advances in Research on Idiosyncratic Drug-Induced Liver Injury. Allergy, Asthma and Immunology Research, 2016, 8, 3.	1.1	2
165	Shedding Light on Drug-Induced Liver Injury: Activation of T Cells From Drug Naive Human Donors With Tolvaptan and a Hydroxybutyric Acid Metabolite. Toxicological Sciences, 2021, 179, 95-107.	1.4	2
166	Does immune checkpoint inhibitor therapy increase the frequency of adverse reactions to concomitant medications?. Clinical and Experimental Allergy, 2022, 52, 600-603.	1.4	2
167	Advances in Our Understanding of the Interaction of Drugs with T-cells: Implications for the Discovery of Biomarkers in Severe Cutaneous Drug Reactions. Chemical Research in Toxicology, 2022, 35, 1162-1183.	1.7	2
168	Prospective observational study of SARS-CoV-2 infection, transmission and immunity in a cohort of households in Liverpool City Region, UK (COVID-LIV): a study protocol. BMJ Open, 2021, 11, e048317.	0.8	1
169	Characterization of Teicoplanin-Specific T-Cells from Drug NaÃ ⁻ ve Donors Expressing HLA-A*32:01. Chemical Research in Toxicology, 2022, 35, 199-202.	1.7	1
170	Tâ€cellâ€mediated hypersensitivity to lumacaftor and ivacaftor in cystic fibrosis. Pediatric Allergy and Immunology, 2022, 33, .	1.1	1
171	Negative regulation by Programmed Death Ligandâ€1 during drugâ€specific priming of Tâ€cells and the influence of Programmed Deathâ€1 on effector Tâ€cell function. Clinical and Translational Allergy, 2014, 4, O2.	1.4	0