Christopher Weidenmaier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9147964/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Staphylococcus epidermidis clones express Staphylococcus aureus-type wall teichoic acid to shift from a commensal to pathogen lifestyle. Nature Microbiology, 2021, 6, 757-768.	5.9	37
2	Revisiting the regulation of the capsular polysaccharide biosynthesis gene cluster in <i>Staphylococcus aureus</i> . Molecular Microbiology, 2019, 112, 1083-1099.	1.2	17
3	Function and regulation of Staphylococcus aureus wall teichoic acids and capsular polysaccharides. International Journal of Medical Microbiology, 2019, 309, 151333.	1.5	31
4	Langerhans Cells Sense <i>Staphylococcus aureus</i> Wall Teichoic Acid through Langerin To Induce Inflammatory Responses. MBio, 2019, 10, .	1.8	46
5	Proteolytic Degradation of reduced Human Beta Defensin 1 generates a Novel Antibiotic Octapeptide. Scientific Reports, 2019, 9, 3640.	1.6	20
6	Synthesis of a Novel Curcumin Derivative as a Potential Imaging Probe in Alzheimer's Disease Imaging. Current Alzheimer Research, 2019, 16, 723-731.	0.7	1
7	Staphylococcus aureus blocks insulin function. Nature Microbiology, 2018, 3, 533-534.	5.9	2
8	Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nature Communications, 2018, 9, 1379.	5.8	213
9	Analysis of Staphylococcus aureus wall teichoic acid glycoepitopes by Fourier Transform Infrared Spectroscopy provides novel insights into the staphylococcal glycocode. Scientific Reports, 2018, 8, 1889.	1.6	24
10	Staphylococcal Enterotoxins Dose-Dependently Modulate the Generation of Myeloid-Derived Suppressor Cells. Frontiers in Cellular and Infection Microbiology, 2018, 8, 321.	1.8	17
11	A Novel Fluorescence-Labeled Curcumin Conjugate: Synthesis, Evaluation and Imaging on Human Cell Lines. Current Pharmaceutical Design, 2018, 24, 1821-1826.	0.9	3
12	Wall teichoic acids mediate increased virulence in Staphylococcus aureus. Nature Microbiology, 2017, 2, 16257.	5.9	81
13	The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nature Reviews Microbiology, 2017, 15, 675-687.	13.6	222
14	Entry, Intracellular Survival, and Multinucleated-Giant-Cell-Forming Activity of Burkholderia pseudomallei in Human Primary Phagocytic and Nonphagocytic Cells. Infection and Immunity, 2017, 85, .	1.0	50
15	Cell wall glycopolymers of Firmicutes and their role as nonprotein adhesins. FEBS Letters, 2016, 590, 3758-3771.	1.3	37
16	Human commensals producing a novel antibiotic impair pathogen colonization. Nature, 2016, 535, 511-516.	13.7	667
17	Glucose Augments Killing Efficiency of Daptomycin Challenged Staphylococcus aureus Persisters. PLoS ONE, 2016, 11, e0150907.	1.1	43
18	Chemosensitization of Prostate Carcinoma Cells with a Receptor-directed Smac Conjugate. Medicinal Chemistry, 2016, 12, 412-418.	0.7	1

2

#	Article	IF	CITATIONS
19	Fluorescein-labeled Bacitracin and Daptomycin Conjugates: Synthesis, Fluorescence Imaging and Evaluation. Medicinal Chemistry, 2016, 13, 57-64.	0.7	2
20	Phenotypic heterogeneity and temporal expression of the capsular polysaccharide in <scp><i>S</i></scp> <i>taphylococcus aureus</i> . Molecular Microbiology, 2015, 98, 1073-1088.	1.2	27
21	Wall Teichoic Acid Glycosylation Governs Staphylococcus aureus Nasal Colonization. MBio, 2015, 6, e00632.	1.8	84
22	Structure and Function of Surface Polysaccharides of Staphylococcus aureus. Current Topics in Microbiology and Immunology, 2015, 409, 57-93.	0.7	35
23	Analysis of a long-term outbreak of XDR <i>Pseudomonas aeruginosa</i> : a molecular epidemiological study. Journal of Antimicrobial Chemotherapy, 2015, 70, 1322-1330.	1.3	46
24	The Fall of a Dogma? Unexpected High T-Cell Memory Response to <i>Staphylococcus aureus</i> in Humans. Journal of Infectious Diseases, 2015, 212, 830-838.	1.9	97
25	Antibiotic Selection Pressure Determination through Sequence-Based Metagenomics. Antimicrobial Agents and Chemotherapy, 2015, 59, 7335-7345.	1.4	61
26	A Nasal Epithelial Receptor for Staphylococcus aureus WTA Governs Adhesion to Epithelial Cells and Modulates Nasal Colonization. PLoS Pathogens, 2014, 10, e1004089.	2.1	91
27	Nutrient Limitation Governs Staphylococcus aureus Metabolism and Niche Adaptation in the Human Nose. PLoS Pathogens, 2014, 10, e1003862.	2.1	166
28	Phenotypic and Genotypic Characterization of Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus Strains: Relative Roles of mprF and dlt Operons. PLoS ONE, 2014, 9, e107426.	1.1	105
29	<i><scp>S</scp>taphylococcus aureus</i> subverts cutaneous defense by <scp>d</scp> â€alanylation of teichoic acids. Experimental Dermatology, 2013, 22, 294-296.	1.4	31
30	Ultralarge von Willebrand Factor Fibers Mediate LuminalStaphylococcus aureusAdhesion to an Intact Endothelial Cell Layer Under Shear Stress. Circulation, 2013, 128, 50-59.	1.6	102
31	Increased Cell Wall Teichoic Acid Production and D-alanylation Are Common Phenotypes among Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus (MRSA) Clinical Isolates. PLoS ONE, 2013, 8, e67398.	1.1	86
32	Staphylococcus aureus determinants for nasal colonization. Trends in Microbiology, 2012, 20, 243-250.	3.5	127
33	Correlation of Daptomycin Resistance in a Clinical <i>Staphylococcus aureus</i> Strain with Increased Cell Wall Teichoic Acid Production and <scp>d</scp> -Alanylation. Antimicrobial Agents and Chemotherapy, 2011, 55, 3922-3928.	1.4	117
34	The Zwitterionic Cell Wall Teichoic Acid of Staphylococcus aureus Provokes Skin Abscesses in Mice by a Novel CD4+ T-Cell-Dependent Mechanism. PLoS ONE, 2010, 5, e13227.	1.1	32
35	Characterization of the Structure and Biological Functions of a Capsular Polysaccharide Produced by Staphylococcus saprophyticus. Journal of Bacteriology, 2010, 192, 4618-4626.	1.0	22
36	Wall Teichoic Acid Protects <i>Staphylococcus aureus</i> against Antimicrobial Fatty Acids from Human Skin. Journal of Bacteriology, 2009, 191, 4482-4484.	1.0	96

#	Article	IF	CITATIONS
37	Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nature Reviews Microbiology, 2008, 6, 276-287.	13.6	633
38	Differential roles of sortase-anchored surface proteins and wall teichoic acid in Staphylococcus aureus nasal colonization. International Journal of Medical Microbiology, 2008, 298, 505-513.	1.5	87
39	Wall Teichoic Acid Deficiency in <i>Staphylococcus aureus</i> Confers Selective Resistance to Mammalian Group IIA Phospholipase A ₂ and Human β-Defensin 3. Infection and Immunity, 2008, 76, 2169-2176.	1.0	61
40	Influence of Wall Teichoic Acid on Lysozyme Resistance in Staphylococcus aureus. Journal of Bacteriology, 2007, 189, 280-283.	1.0	156
41	DltABCD-mediated d-alanylation of teichoic acids in Group A Streptococcus confers innate immune resistance. International Congress Series, 2006, 1289, 254-256.	0.2	0
42	DltABCD- and MprF-Mediated Cell Envelope Modifications of Staphylococcus aureus Confer Resistance to Platelet Microbicidal Proteins and Contribute to Virulence in a Rabbit Endocarditis Model. Infection and Immunity, 2005, 73, 8033-8038.	1.0	148
43	d -Alanylation of Teichoic Acids Promotes Group A Streptococcus Antimicrobial Peptide Resistance, Neutrophil Survival, and Epithelial Cell Invasion. Journal of Bacteriology, 2005, 187, 6719-6725.	1.0	222
44	Lack of Wall Teichoic Acids inStaphylococcus aureusLeads to Reduced Interactions with Endothelial Cells and to Attenuated Virulence in a Rabbit Model of Endocarditis. Journal of Infectious Diseases, 2005, 191, 1771-1777.	1.9	207
45	Reply to "Nasal colonization by Staphylococcus aureus― Nature Medicine, 2004, 10, 447-447.	15.2	4
46	Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nature Medicine, 2004, 10, 243-245.	15.2	503
47	Bacterial Resistance to Antimicrobial Host Defenses - An Emerging Target for Novel Antiinfective Strategies?. Current Drug Targets, 2003, 4, 643-649.	1.0	92
48	Staphylococcus aureusStrains Lackingdâ€Alanine Modifications of Teichoic Acids Are Highly Susceptible to Human Neutrophil Killing and Are Virulence Attenuated in Mice. Journal of Infectious Diseases, 2002, 186, 214-219.	1.9	220