
Benoît Noyelles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9147542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N ₂ ⁺ fluorescence spectrum of comet C/2016 R2 (PanSTARRS). Astronomy and Astrophysics, 2022, 661, A131.	5.1	5
2	New constraints on the physical properties and dynamical history of Centaur 174P/Echeclus. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3444-3460.	4.4	5
3	Interior properties of the inner saturnian moons from space astrometry data. Icarus, 2019, 326, 48-62.	2.5	9
4	Formation of the Cassini Division – II. Possible histories of Mimas and Enceladus. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2947-2963.	4.4	7
5	Formation of the Cassini Division – I. Shaping the rings by Mimas inward migration. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2933-2946.	4.4	8
6	Rotation of a synchronous viscoelastic shell. Monthly Notices of the Royal Astronomical Society, 2018, 474, 5614-5644.	4.4	3
7	Tilting Styx and Nix but not Uranus with a Spin-Precession-Mean-motion resonance. Celestial Mechanics and Dynamical Astronomy, 2018, 130, 1.	1.4	12
8	Strong tidal energy dissipation in Saturn at Titan's frequency as an explanation for Iapetus orbit. Astronomy and Astrophysics, 2018, 619, A133.	5.1	9
9	Obliquity evolution of the minor satellites of Pluto and Charon. Icarus, 2017, 293, 94-113.	2.5	27
10	Interpreting the librations of a synchronous satellite – How their phase assesses Mimas' global ocean. Icarus, 2017, 282, 276-289.	2.5	14
11	The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets. Planetary and Space Science, 2014, 104, 122-140.	1.7	56
12	Constraints on Mimas' interior from Cassini ISS libration measurements. Science, 2014, 346, 322-324.	12.6	65
13	Spin–orbit evolution of Mercury revisited. Icarus, 2014, 241, 26-44.	2.5	62
14	New clues on the interior of Titan from its rotation state. Proceedings of the International Astronomical Union, 2014, 9, 17-20.	0.0	4
15	Revisiting the capture of Mercury into its 3:2 spin-orbit resonance. Proceedings of the International Astronomical Union, 2014, 9, 33-34.	0.0	0
16	The PHEMU09 catalogue and astrometric results of the observations of the mutual occultations and eclipses of the Galilean satellites of Jupiter made in 2009. Astronomy and Astrophysics, 2014, 572, A120.	5.1	24
17	The rotation of Io predicted by the Poincaré–Hough model. Icarus, 2013, 223, 621-624.	2.5	4
18	The influence of orbital dynamics, shape and tides on the obliquity of Mercury. Advances in Space Research, 2013, 52, 2085-2101.	2.6	8

Benoît Noyelles

#	Article	IF	CITATIONS
19	A numerical exploration of Miranda's dynamical history. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1776-1787.	4.4	27
20	GETEMME—a mission to explore the Martian satellites and the fundamentals of solar system physics. Experimental Astronomy, 2012, 34, 243-271.	3.7	17
21	Behavior of nearby synchronous rotations of a Poincaré–Hough satellite at low eccentricity. Celestial Mechanics and Dynamical Astronomy, 2012, 112, 353-383.	1.4	9
22	Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Experimental Astronomy, 2012, 33, 753-791.	3.7	44
23	Modeling the obliquity of Mercury. Planetary and Space Science, 2012, 60, 274-286.	1.7	2
24	The rotation of Mimas. Astronomy and Astrophysics, 2011, 536, A61.	5.1	7
25	Theory of the rotation of the Galilean satellites. Proceedings of the International Astronomical Union, 2010, 6, 240-244.	0.0	0
26	A secondary resonance in Mercury's rotation. Celestial Mechanics and Dynamical Astronomy, 2010, 107, 93-100.	1.4	2
27	Theory of the rotation of Janus and Epimetheus. Icarus, 2010, 207, 887-902.	2.5	14
28	Core-mantle interactions for Mercury. Monthly Notices of the Royal Astronomical Society, 2010, 407, 479-496.	4.4	15
29	Expression of Cassini's third law for Callisto, and theory of its rotation. Icarus, 2009, 202, 225-239.	2.5	13
30	Latitudinal librations of Mercury with a fluid core. Icarus, 2009, 203, 1-12.	2.5	22
31	Determination of an instantaneous Laplace plane for Mercury's rotation. Advances in Space Research, 2009, 44, 597-603.	2.6	6
32	The PHEMU03 catalogue of observations of the mutual phenomena of the Galilean satellites of Jupiter. Astronomy and Astrophysics, 2009, 493, 1171-1182.	5.1	13
33	Titan's rotational state. Celestial Mechanics and Dynamical Astronomy, 2008, 101, 13-30.	1.4	13
34	New evidence of precision premium for Galilean satellites from CCD imaging. Planetary and Space Science, 2008, 56, 1807-1811.	1.7	10
35	Titan's rotation. Astronomy and Astrophysics, 2008, 478, 959-970.	5.1	20
36	Eclipses and Occultations of Galilean Satellites Observed at Yunnan Observatory in 2003. Research in Astronomy and Astrophysics, 2007, 7, 317-324.	1.1	1

Benoît Noyelles

#	Article	IF	CITATIONS
37	Chaos induced by De Haerdtl inequality in the Galilean system. Icarus, 2007, 190, 594-607.	2.5	7
38	The k:k+4 resonances in planetary systems. Proceedings of the International Astronomical Union, 2004, 2004, 453-458.	0.0	3
39	Astrometric reduction of lightcurves observed during theÂPHESAT95 campaign of Saturnian satellites. Astronomy and Astrophysics, 2003, 401, 1159-1175.	5.1	24
40	Observation of 13 mutual events of Jovian satellites performed at Lille Observatory. Astronomy and Astrophysics, 2003, 410, 343-347.	5.1	3
41	Chaos over Order: Mapping 3D Rotation of Triaxial Asteroids and Minor Planets. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	2