
Dalibor Sames

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/914711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lboga Inspired N-Indolylethyl-Substituted Isoquinuclidines as a Bioactive Scaffold: Chemoenzymatic Synthesis and Characterization as GDNF Releasers and Antitrypanosoma Agents. Molecules, 2022, 27, 829.	3.8	2
2	Chemical Targeting of Rhodol Voltage-Sensitive Dyes to Dopaminergic Neurons. ACS Chemical Neuroscience, 2022, 13, 1251-1262.	3.5	0
3	Site selective C–H functionalization of Mitragyna alkaloids reveals a molecular switch for tuning opioid receptor signaling efficacy. Nature Communications, 2021, 12, 3858.	12.8	25
4	A Novel Mitragynine Analog with Low-Efficacy Mu Opioid Receptor Agonism Displays Antinociception with Attenuated Adverse Effects. Journal of Medicinal Chemistry, 2021, 64, 13873-13892.	6.4	33
5	Oxidative Metabolism as a Modulator of Kratom's Biological Actions. Journal of Medicinal Chemistry, 2021, 64, 16553-16572.	6.4	26
6	Development of a Dual Fluorescent and Magnetic Resonance False Neurotransmitter That Reports Accumulation and Release from Dopaminergic Synaptic Vesicles. ACS Chemical Neuroscience, 2021, , .	3.5	3
7	Chemical Targeting of Voltage Sensitive Dyes to Specific Cells and Molecules in the Brain. Journal of the American Chemical Society, 2020, 142, 9285-9301.	13.7	17
8	A Single Administration of the Atypical Psychedelic Ibogaine or Its Metabolite Noribogaine Induces an Antidepressant-Like Effect in Rats. ACS Chemical Neuroscience, 2020, 11, 1661-1672.	3.5	25
9	7-Hydroxymitragynine Is an Active Metabolite of Mitragynine and a Key Mediator of Its Analgesic Effects. ACS Central Science, 2019, 5, 992-1001.	11.3	120
10	Ibogaine Administration Modifies GDNF and BDNF Expression in Brain Regions Involved in Mesocorticolimbic and Nigral Dopaminergic Circuits. Frontiers in Pharmacology, 2019, 10, 193.	3.5	35
11	FLUORESCENT FALSE NEUROTRANSMITTERS. , 2019, , 33-48.		0
12	Toward Serotonin Fluorescent False Neurotransmitters: Development of Fluorescent Dual Serotonin and Vesicular Monoamine Transporter Substrates for Visualizing Serotonin Neurons. ACS Chemical Neuroscience, 2018, 9, 925-934.	3.5	25
13	Identification of Fluorescent Small Molecule Compounds for Synaptic Labeling by Image-Based, High-Content Screening. ACS Chemical Neuroscience, 2018, 9, 673-683.	3.5	5
14	Designing a norepinephrine optical tracer for imaging individual noradrenergic synapses and their activity in vivo. Nature Communications, 2018, 9, 2838.	12.8	42
15	Evoked transients of pH-sensitive fluorescent false neurotransmitter reveal dopamine hot spots in the globus pallidus. ELife, 2018, 7, .	6.0	12
16	The Behavioral Effects of the Antidepressant Tianeptine Require the Mu-Opioid Receptor. Neuropsychopharmacology, 2017, 42, 2052-2063.	5.4	240
17	Multiplex quantitative assays indicate a need for reevaluating reported small-molecule TrkB agonists. Science Signaling, 2017, 10, .	3.6	65
18	Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT. Neuron, 2017, 95, 1074-1088.e7.	8.1	69

DALIBOR SAMES

#	Article	IF	CITATIONS
19	Die Erschließung von Wirkstoffmetaboliten durch übergangsmetallkatalysierte Câ€Hâ€Oxidation: die Leber als Inspiration für die Synthese. Angewandte Chemie, 2016, 128, 14430-14451.	2.0	23
20	Synthetic and Receptor Signaling Explorations of the <i>Mitragyna</i> Alkaloids: Mitragynine as an Atypical Molecular Framework for Opioid Receptor Modulators. Journal of the American Chemical Society, 2016, 138, 6754-6764.	13.7	233
21	Accessing Drug Metabolites via Transitionâ€Metal Catalyzed Câ^'H Oxidation: The Liver as Synthetic Inspiration. Angewandte Chemie - International Edition, 2016, 55, 14218-14238.	13.8	94
22	Mechanisms of amphetamine action illuminated through optical monitoring of dopamine synaptic vesicles in Drosophila brain. Nature Communications, 2016, 7, 10652.	12.8	97
23	Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. Nature Neuroscience, 2016, 19, 578-586.	14.8	122
24	Deconstructing the <i>lboga</i> Alkaloid Skeleton: Potentiation of FGF2-induced Glial Cell Line-Derived Neurotrophic Factor Release by a Novel Compound. ACS Chemical Biology, 2016, 11, 77-87.	3.4	19
25	NeuO: a Fluorescent Chemical Probe for Live Neuron Labeling. Angewandte Chemie, 2015, 127, 2472-2476.	2.0	12
26	Constructing <i>lboga</i> Alkaloids via C–H Bond Functionalization: Examination of the Direct and Catalytic Union of Heteroarenes and Isoquinuclidine Alkenes. Journal of Organic Chemistry, 2015, 80, 2062-2071.	3.2	42
27	NeuO: a Fluorescent Chemical Probe for Live Neuron Labeling. Angewandte Chemie - International Edition, 2015, 54, 2442-2446.	13.8	73
28	Synaptic optical imaging platforms: Examining pharmacological modulation of neurotransmitter release at discrete synapses. Neuropharmacology, 2015, 98, 90-94.	4.1	10
29	Paradoxical Abatement of Striatal Dopaminergic Transmission by Cocaine and Methylphenidate. Journal of Biological Chemistry, 2014, 289, 264-274.	3.4	27
30	New Fluorescent Substrate Enables Quantitative and High-Throughput Examination of Vesicular Monoamine Transporter 2 (VMAT2). ACS Chemical Biology, 2013, 8, 1947-1954.	3.4	52
31	Fluorescent dopamine tracer resolves individual dopaminergic synapses and their activity in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 870-875.	7.1	91
32	Visualizing Neurotransmitter Secretion at Individual Synapses. ACS Chemical Neuroscience, 2013, 4, 648-651.	3.5	32
33	APP+, a Fluorescent Analogue of the Neurotoxin MPP+, Is a Marker of Catecholamine Neurons in Brain Tissue, but Not a Fluorescent False Neurotransmitter. ACS Chemical Neuroscience, 2013, 4, 858-869.	3.5	29
34	Catalytic Coupling of Arene C–H Bonds and Alkynes for the Synthesis of Coumarins: Substrate Scope and Application to the Development of Neuroimaging Agents. Journal of Organic Chemistry, 2012, 77, 7804-7814.	3.2	69
35	C–H Arylation of Pyridines: High Regioselectivity as a Consequence of the Electronic Character of C–H Bonds and Heteroarene Ring. Journal of the American Chemical Society, 2011, 133, 16338-16341.	13.7	140
36	Development of pH-Responsive Fluorescent False Neurotransmitters. Journal of the American Chemical Society, 2010, 132, 8828-8830.	13.7	127

DALIBOR SAMES

#	Article	IF	CITATIONS
37	Fluorescent False Neurotransmitters Visualize Dopamine Release from Individual Presynaptic Terminals. Science, 2009, 324, 1441-1444.	12.6	184
38	Câ^'H Bonds as Ubiquitous Functionality: A General Approach to Complex Arylated Pyrazoles via Sequential Regioselective <i>C</i> -Arylation and <i>N</i> -Alkylation Enabled by SEM-Group Transposition. Journal of the American Chemical Society, 2009, 131, 3042-3048.	13.7	184
39	Dopamine Release at Individual Presynaptic Terminals Visualized with FFNs. Journal of Visualized Experiments, 2009, , .	0.3	7
40	A Luminescent Sensor for Tyrosine Phosphorylation. Organic Letters, 2008, 10, 5-8.	4.6	59
41	Dynamic properties and optical phase conjugation of two-photon pumped ultrashort blue stimulated emission in a chromophore solution. Physical Review A, 2008, 77, .	2.5	10
42	Harnessing Functional Plasticity of Enzymes: A Fluorogenic Probe for Imaging 17β-HSD10 Dehydrogenase, an Enzyme Involved in Alzheimer's and Parkinson's Diseases. Journal of the American Chemical Society, 2007, 129, 14518-14522.	13.7	44
43	Transposing Molecular Fluorescent Switches into the Near-IR:Â Development of Luminogenic Reporter Substrates for Redox Metabolism. Journal of the American Chemical Society, 2007, 129, 7704-7705.	13.7	72
44	Cocktails of Tb3+ and Eu3+ Complexes:  A General Platform for the Design of Ratiometric Optical Probes. Journal of the American Chemical Society, 2007, 129, 7570-7577.	13.7	171
45	sp3Câ^'H Bond Arylation Directed by Amidine Protecting Group: α-Arylation of Pyrrolidines and Piperidines. Journal of the American Chemical Society, 2006, 128, 14220-14221.	13.7	298
46	Synthesis of luminescent heterometallic bis-lanthanide complexes via selective, sequential metallation. Chemical Communications, 2006, , 4116.	4.1	55
47	Phosphorylation State-Responsive Lanthanide Peptide Conjugates: A Luminescence Switch Based on Reversible Complex Reorganization. Organic Letters, 2006, 8, 2723-2726.	4.6	48
48	C-H Bond Functionalization in Complex Organic Synthesis. Science, 2006, 312, 67-72.	12.6	2,007
49	Fluoromorphic Substrates for Fatty Acid Metabolism: Highly Sensitive Probes for Mammalian Medium-Chain Acyl-CoA Dehydrogenase. Angewandte Chemie - International Edition, 2006, 45, 637-642.	13.8	12
50	Fluorogenic metabolic probes for direct activity readout of redox enzymes: Selective measurement of human AKR1C2 in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13304-13309.	7.1	40
51	Design of Optical Switches as Metabolic Indicators:Â New Fluorogenic Probes for Monoamine Oxidases (MAO A and B). Journal of the American Chemical Society, 2005, 127, 4544-4545.	13.7	101
52	Direct Palladium-Catalyzed C-2 and C-3 Arylation of Indoles:Â A Mechanistic Rationale for Regioselectivity. Journal of the American Chemical Society, 2005, 127, 8050-8057.	13.7	617
53	Direct C-Arylation of Free (NH)-Indoles and Pyrroles Catalyzed by Arâ^ Rh(III) Complexes Assembled In Situ. Journal of the American Chemical Society, 2005, 127, 4996-4997.	13.7	321
54	New Tools for Molecular Imaging of Redox Metabolism:Â Development of a Fluorogenic Probe for 3α-Hydroxysteroid Dehydrogenases. Journal of the American Chemical Society, 2004, 126, 2282-2283.	13.7	81

DALIBOR SAMES

#	Article	IF	CITATIONS
55	C—H Bond Functionalization in Complex Organic Synthesis. ACS Symposium Series, 2004, , 155-168.	0.5	2
56	Selective Functionalization of Amino Acids in Water: A Synthetic Method via Catalytic Câ^'H Bond Activation. Journal of the American Chemical Society, 2001, 123, 8149-8150.	13.7	208
57	Highly Regioselective Oxygenation of Câ^'H Bonds: Diamidomanganese Constructs with Attached Substrates as Catalyst Models. Angewandte Chemie - International Edition, 2000, 39, 1618-1621.	13.8	25
58	Câ^'H Bond Activation of Hydrocarbon Segments in Complex Organic Molecules:Â Total Synthesis of the Antimitotic Rhazinilam. Journal of the American Chemical Society, 2000, 122, 6321-6322.	13.7	144
59	Probing Cell Surface "Glyco-Architecture―through Total Synthesis. Immunological Consequences of a Human Blood Group Determinant in a Clustered Mucin-like Context. Journal of the American Chemical Society, 1999, 121, 10636-10637.	13.7	35
60	Evolution and Study of Polymer-Supported Metal Catalysts for Oxygen Atom Transfer:Â Oxidation of Alkanes and Alkenes by Diamide Manganese Complexes. Journal of the American Chemical Society, 1999, 121, 8965-8966.	13.7	27