M A. Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9147006/publications.pdf

Version: 2024-02-01

118	4,039	35	57
papers	citations	h-index	g-index
118	118	118	5174
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Engineering hybrid textile braids for tendon and ligament repair application. Journal of Applied Polymer Science, 2022, 139, 52013.	1.3	4
2	Improvement of the efficacy of endodontic solvents by ultrasonic agitation. Saudi Dental Journal, 2021, 33, 39-43.	0.5	7
3	Adjunctive procedure with solvent mixtures in non-surgical endodontic retreatment: does it affect root dentin hardness?. Odontology / the Society of the Nippon Dental University, 2021, 109, 812-818.	0.9	2
4	Bioactive and biopassive treatment of poly(ethylene terephthalate) multifilament textile yarns to improve/prevent fibroblast viability. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 2213-2226.	1.6	5
5	Supplementary solvent irrigation efficacy on filling remnants removal comparing XP-endo Finisher R vs IrriSafe. Scientific Reports, 2021, 11, 12659.	1.6	6
6	Antimicrobial profile of a dental implant abutment coating to prevent adhesion and migration of bacteria and screw loosening. Dental Materials, 2021, 37, e493-e501.	1.6	4
7	Efficacy and Cytotoxicity of Binary Mixtures as Root Canal Filling Solvents. Materials, 2020, 13, 3237.	1.3	7
8	Potential of Graphene–Polymer Composites for Ligament and Tendon Repair: A Review. Advanced Engineering Materials, 2020, 22, 2000492.	1.6	12
9	Surface functionalization of polypropylene (PP) by chitosan immobilization to enhance human fibroblasts viability. Polymer Testing, 2020, 86, 106507.	2.3	10
10	Mechanical behavior of ropes based on polypropylene (PP) and poly(ethylene terephthalate) (PET) multifilament yarns for Achilles tendon partial substitution. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 106, 103734.	1.5	10
11	Development and characterization of ZnO piezoelectric thin films on polymeric substrates for tissue repair. Journal of Biomedical Materials Research - Part A, 2019, 107, 2150-2159.	2.1	20
12	Development of asymmetric resorbable membranes for guided bone and surrounding tissue regeneration. Journal of Biomedical Materials Research - Part A, 2018, 106, 2141-2150.	2.1	8
13	Fibrous structures in augmentation for rotator cuff repair: an experimental comparison. Biomedical Physics and Engineering Express, 2018, 4, 045021.	0.6	2
14	The benefit of bone marrow concentrate in addition to a glass-reinforced hydroxyapatite for bone regeneration: An in vivo ovine study. Journal of Orthopaedic Research, 2017, 35, 1176-1182.	1.2	3
15	Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model. International Journal of Pharmaceutics, 2017, 523, 515-530.	2.6	17
16	New Insight into the Dissolution of Epoxy Resin–based Sealers. Journal of Endodontics, 2017, 43, 1505-1510.	1.4	16
17	Preparation of chitosan-hydroxyapatite composite mono-fiber using coagulation method and their mechanical properties. Carbohydrate Polymers, 2017, 175, 355-360.	5.1	14
18	Antimicrobial Approaches for Textiles: From Research to Market. Materials, 2016, 9, 498.	1.3	264

#	Article	IF	CITATIONS
19	Preparation and characterization of electrical conductive PVA based materials for peripheral nerve tube-guides. Journal of Biomedical Materials Research - Part A, 2016, 104, 1981-1987.	2.1	12
20	Long term performance evaluation of small-diameter vascular grafts based on polyvinyl alcohol hydrogel and dextran and MSCs-based therapies using the ovine pre-clinical animal model. International Journal of Pharmaceutics, 2016, 513, 332-346.	2.6	15
21	Microanalysis of Bioactive Samarium Doped Glass-Reinforced Hydroxyapatite. Microscopy and Microanalysis, 2015, 21, 31-32.	0.2	3
22	The Benefit of a Human Bone Marrow Stem Cells Concentrate in addition to an Inorganic Scaffold for Bone Regeneration: AnIn VitroStudy. BioMed Research International, 2015, 2015, 1-10.	0.9	1
23	Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regeneration. Biomedical Materials (Bristol), 2015, 10, 055008.	1.7	45
24	Smart electroconductive bioactive ceramics to promote in situ electrostimulation of bone. Journal of Materials Chemistry B, 2015, 3, 1831-1845.	2.9	20
25	Current Approaches and Future Trends to Promote Tendon Repair. Annals of Biomedical Engineering, 2015, 43, 2025-2035.	1.3	25
26	<i>In vitro</i> and <i>in vivo</i> evaluation of blood coagulation activation of polyvinyl alcohol hydrogel plus dextran-based vascular grafts. Journal of Biomedical Materials Research - Part A, 2015, 103, 1366-1379.	2.1	29
27	Preparation and <i>in vitro </i> cytocompatibility of chitosan-siloxane hybrid hydrogels. Journal of Biomedical Materials Research - Part A, 2015, 103, 289-299.	2.1	27
28	Evaluation of biodegradable electric conductive tube-guides and mesenchymal stem cells. World Journal of Stem Cells, 2015, 7, 956.	1.3	20
29	Antibiofilm and Antimicrobial Activity of Polyethylenimine: An Interesting Compound for Endodontic Treatment. Journal of Contemporary Dental Practice, 2015, 16, 427-432.	0.2	17
30	Bone Marrow Stem Cells Added to a Hydroxyapatite Scaffold Result in Better Outcomes after Surgical Treatment of Intertrochanteric Hip Fractures. BioMed Research International, 2014, 2014, 1-7.	0.9	13
31	Cell Therapy with Human MSCs Isolated from the Umbilical Cord Wharton Jelly Associated to a PVA Membrane in the Treatment of Chronic Skin Wounds. International Journal of Medical Sciences, 2014, 11, 979-987.	1.1	53
32	Challenges for Nerve Repair Using Chitosan-Siloxane Hybrid Porous Scaffolds. BioMed Research International, 2014, 2014, 1-7.	0.9	16
33	Processing strategies for smart electroconductive carbon nanotube-based bioceramic bone grafts. Nanotechnology, 2014, 25, 145602.	1.3	6
34	Effects of Human Mesenchymal Stem Cells Isolated from Wharton's Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model. Stem Cells International, 2014, 2014, 1-16.	1.2	34
35	Response of Human Osteoblastic and Osteoclastic Cells toÂAH Plus and Pulp Canal Sealer Containing Quaternary Ammonium Polyethylenimine Nanoparticles. Journal of Endodontics, 2014, 40, 1149-1155.	1.4	18
36	Carbon nanotube-based bioceramic grafts for electrotherapy of bone. Materials Science and Engineering C, 2014, 34, 360-368.	3.8	15

#	Article	IF	CITATIONS
37	Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting-In vitroandin vivostudies. Journal of Biomedical Materials Research - Part A, 2014, 102, n/a-n/a.	2.1	84
38	Samarium doped glass-reinforced hydroxyapatite with enhanced osteoblastic performance and antibacterial properties for bone tissue regeneration. Journal of Materials Chemistry B, 2014, 2, 5872-5881.	2.9	40
39	Antibacterial, physicochemical and mechanical properties of endodontic sealers containing quaternary ammonium polyethylenimine nanoparticles. International Endodontic Journal, 2014, 47, 725-734.	2.3	53
40	A new sheep model with automatized analysis of biomaterial-induced bone tissue regeneration. Journal of Materials Science: Materials in Medicine, 2014, 25, 1885-1901.	1.7	10
41	Antibiofilm Effects of Endodontic Sealers Containing Quaternary Ammonium Polyethylenimine Nanoparticles. Journal of Endodontics, 2014, 40, 1167-1171.	1.4	45
42	Multifunctional Carbon Nanotube/Bioceramics Modulate the Directional Growth and Activity of Osteoblastic Cells. Journal of Biomedical Nanotechnology, 2014, 10, 725-743.	0.5	18
43	Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes. Carbohydrate Polymers, 2013, 95, 134-142.	5.1	51
44	Perspectives of Employing Mesenchymal Stem Cells from the Wharton's Jelly of the Umbilical Cord for Peripheral Nerve Repair. International Review of Neurobiology, 2013, 108, 79-120.	0.9	26
45	Biological evaluation of alginate-based hydrogels, with antimicrobial features by Ce(III) incorporation, as vehicles for a bone substitute. Journal of Materials Science: Materials in Medicine, 2013, 24, 2145-2155.	1.7	40
46	Treatment of a Large Cystic Lesion in Anterior Maxilla Using Glass Reinforced Hydroxyapatite – A Case Report. Solid State Phenomena, 2013, 207, 97-108.	0.3	2
47	A glass-reinforced hydroxyapatite and surgical-grade calcium sulfate for bone regeneration: <i>lnÂvivo</i> biological behavior in a sheep model. Journal of Biomaterials Applications, 2012, 27, 201-217.	1.2	18
48	Hydroxyapatite surface roughness: Complex modulation of the osteoclastogenesis of human precursor cells. Acta Biomaterialia, 2012, 8, 1137-1145.	4.1	65
49	Development and Characterization of <scp><scp>Ag</scp></scp> <scb>2<scp><scp>O</scp></scp>â<doped <scp=""><scp>ZnLB</scp> Glasses and Biological Assessment of <scp><scp>Ag</scp></scp></doped></scb>	1.9 oxyapatite	10
50	<i>Equisetum arvense</i> hydromethanolic extracts in bone tissue regeneration: <i>in vitro</i> osteoblastic modulation and antibacterial activity. Cell Proliferation, 2012, 45, 386-396.	2.4	32
51	Degradation Studies and Biological Behavior on an Artificial Cornea Material. , 2011, 52, 4274.		17
52	Characterization and preliminary <i>in vivo</i> evaluation of a novel modified hydroxyapatite produced by extrusion and spheronization techniques. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 170-179.	1.6	25
53	In vitro and in vivo chitosan membranes testing for peripheral nerve reconstruction. Acta Medica Portuguesa, 2011, 24, 43-52.	0.2	24
54	New titanium and titanium/hydroxyapatite coatings on ultra-high-molecular-weight polyethyleneâ€" in vitro osteoblastic performance. Biomedical Materials (Bristol), 2010, 5, 035014.	1.7	9

#	Article	IF	CITATIONS
55	Evaluation of human osteoblastic cell response to plasmaâ€sprayed siliconâ€substituted hydroxyapatite coatings over titanium substrates. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 94B, 337-346.	1.6	51
56	Absorption and Emission Analysis of RE ³⁺ (Sm ³⁺ and) Tj ETQq0 Nanotechnology, 2009, 9, 3672-3677.	0 0 rgBT / 0.9	Overlock 10 67
57	Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentrationa †. Acta Biomaterialia, 2009, 5, 346-355.	4.1	99
58	Cytotoxicity evaluation of nanocrystalline diamond coatings by fibroblast cell cultures. Acta Biomaterialia, 2009, 5, 755-763.	4.1	62
59	Assessment of the osteoblastic cell response to a zinc glass reinforced hydroxyapatite composite (Zn-GRHA). International Journal of Nano and Biomaterials, 2009, 2, 100.	0.1	O
60	Synthesis and Characterization of Chitosan-Silicate Hydrogel as Resorbable Vehicle for Bonelike [®] Bone Graft. Journal of Nanoscience and Nanotechnology, 2009, 9, 3714-3719.	0.9	17
61	Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model. Biomaterials, 2008, 29, 4409-4419.	5.7	115
62	Nanocrystalline diamond: <i>In vitro</i> biocompatibility assessment by MG63 and human bone marrow cells cultures. Journal of Biomedical Materials Research - Part A, 2008, 87A, 91-99.	2.1	120
63	Bone ingrowth in macroporous Bonelike® for orthopaedic applications. Acta Biomaterialia, 2008, 4, 370-377.	4.1	34
64	3-D biomodelling technology for maxillofacial reconstruction. Materials Science and Engineering C, 2008, 28, 1347-1351.	3.8	24
65	Use of PLGA 90:10 Scaffolds Enriched with <i>In Vitro</i> –Differentiated Neural Cells for Repairing Rat Sciatic Nerve Defects. Tissue Engineering - Part A, 2008, 14, 979-993.	1.6	44
66	A Clinical Report of Bone Regeneration in Maxillofacial Surgery using Bonelike $\hat{A}^{@}$ Synthetic Bone Graft. Journal of Biomaterials Applications, 2008, 22, 373-385.	1.2	26
67	Biocompatibility evaluation of DLC-coated Si3N4 substrates for biomedical applications. Diamond and Related Materials, 2008, 17, 878-881.	1.8	73
68	Nanocrystalline Diamond as a Coating for Joint Implants: Cytotoxicity and Biocompatibility Assessment. Journal of Nanomaterials, 2008, 2008, 1-9.	1.5	36
69	Hybrid Chitosan Membranes Tested in Sheep for Guided Tissue Regeneration. Key Engineering Materials, 2007, 361-363, 1265-1268.	0.4	4
70	PLGA 90/10 and caprolactone biodegradable nerve guides for the reconstruction of the rat sciatic nerve. Microsurgery, 2007, 27, 125-137.	0.6	66
71	Physicochemical degradation studies of calcium phosphate glass ceramic in the CaO–P2O5–MgO–TiO2 system. Acta Biomaterialia, 2007, 3, 263-269.	4.1	12
72	Opening wedge high tibial osteotomy using 3D biomodelling Bonelike® macroporous structures: case report. Journal of Materials Science: Materials in Medicine, 2007, 18, 2377-2382.	1.7	25

#	Article	IF	Citations
73	In vivo Performance of Biodegradable Calcium Phosphate Glass Ceramics using the Rabbit Model: Histological and SEM Observation. Journal of Biomaterials Applications, 2006, 20, 253-266.	1.2	17
74	Absorption and emission properties of Ho3+ doped lead–zinc–borate glasses. Thin Solid Films, 2006, 515, 318-325.	0.8	37
75	Titanium dental implants coated with Bonelike $\hat{A}^{\text{@}}$: Clinical case report. Thin Solid Films, 2006, 515, 279-284.	0.8	16
76	Differentiation of mononuclear precursors into osteoclasts on the surface of Siâ€substituted hydroxyapatite. Journal of Biomedical Materials Research - Part A, 2006, 78A, 709-720.	2.1	65
77	Silicon addition to hydroxyapatite increases nanoscale electrostatic, van der Waals, and adhesive interactions. Journal of Biomedical Materials Research - Part A, 2006, 78A, 352-363.	2.1	58
78	Human osteoblast response to silicon-substituted hydroxyapatite. Journal of Biomedical Materials Research - Part A, 2006, 79A, 723-730.	2.1	134
79	Histological and scanning electron microscopy analyses of bone/implant interface using the novel Bonelike® synthetic bone graft. Journal of Orthopaedic Research, 2006, 24, 953-958.	1.2	21
80	In vitro cytocompatibility of MG63 cells on chitosan-organosiloxane hybrid membranes. Biomaterials, 2005, 26, 485-493.	5.7	160
81	In vitro studies of calcium phosphate glass ceramics with different solubility with the use of human bone marrow cells. Journal of Biomedical Materials Research - Part A, 2005, 74A, 347-355.	2.1	14
82	Bonelike�/PLGA hybrid materials for bone regeneration: Preparation route and physicochemical characterisation. Journal of Materials Science: Materials in Medicine, 2005, 16, 253-259.	1.7	19
83	The Influence of Pre-Incubation Treatment in the In Vitro Biological Performance of Degradable CaO-P ₂ O ₅ Glass Ceramics. Key Engineering Materials, 2005, 284-286, 565-568.	0.4	1
84	Assessment of the Potential of Bonelike (sup) \hat{A}^{\otimes} (sup) Graft for Bone Regeneration by Using an Animal Model. Key Engineering Materials, 2005, 284-286, 877-880.	0.4	9
85	Biological Behaviour of Bonelike [®] Graft Implanted in the Tibia of Humans. Key Engineering Materials, 2005, 284-286, 1041-1044.	0.4	13
86	In Vitro Analysis of Protein Adhesion to Phase Pure Hydroxyapatite and Silicon Substituted Hydroxyapatite. Key Engineering Materials, 2005, 284-286, 461-464.	0.4	17
87	In Vitro Biodegradability of Chitosan-Organosiloxane Hybrid Membrane. Key Engineering Materials, 2005, 284-286, 823-826.	0.4	6
88	In situ thermal and structural characterization of bioactive calcium phosphate glass ceramics containing TiO2 and MgO oxides: High temperature – XRD studies. Journal of Non-Crystalline Solids, 2005, 351, 810-817.	1.5	50
89	Determination of the intracellular Ca2+ concentration in the N1E-115 neuronal cell line in perspective of its use for peripheric nerve regeneration. Bio-Medical Materials and Engineering, 2005, 15, 455-65.	0.4	5
90	Intracellular Ca2+ concentration in the N1E-115 neuronal cell line and its use for peripheric nerve regeneration. Acta Medica Portuguesa, 2005, 18, 323-8.	0.2	4

#	Article	IF	CITATIONS
91	In Vitro Mineralisation of Human Bone Marrow Cells Cultured on Bonelike [®] . Key Engineering Materials, 2004, 254-256, 821-824.	0.4	4
92	In Vivo Behaviour of Bonelike [®] /PLGA Hybrid: Histological Analysis and Peripheral Quantitative Computed Tomography (pQ-CT) Evaluation. Key Engineering Materials, 2004, 254-256, 565-568.	0.4	1
93	Bonelike [®] /PLGA Hybrid Materials for Bone Regeneration: In Vivo Evaluation. Materials Science Forum, 2004, 455-456, 374-377.	0.3	1
94	Protein Adsorption Effect on In Vitro Acellular Biodegradation of CaO-P ₂ O ₅ Glass Ceramics. Materials Science Forum, 2004, 455-456, 398-401.	0.3	2
95	Effect of Human Serum Proteins on Pure Hydroxyapatite and Silicon Substituted Hydroxyapatatite: AFM and SEM Studies. Materials Science Forum, 2004, 455-456, 378-382.	0.3	3
96	A comparative study of CaO–P2O5–SiO2 gels prepared by a sol–gel method. Materials Chemistry and Physics, 2004, 88, 5-8.	2.0	23
97	Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatitein vitro andin vivo. Journal of Biomedical Materials Research Part B, 2004, 69A, 670-679.	3.0	137
98	In vitro degradation studies of calcium phosphate glass ceramics prepared by controlled crystallization. Journal of Non-Crystalline Solids, 2003, 330, 81-89.	1.5	42
99	Biological and Physical-Chemical Characterization of Phase Pure HA and SI-Substituted Hydroxyapatite by Different Microscopy Techniques. Key Engineering Materials, 2003, 254-256, 845-848.	0.4	12
100	Biological Activity of Two Glass Ceramics in the Meta- and Pyrophosphate Region: a Comparative Study. Key Engineering Materials, 2003, 254-256, 825-828.	0.4	2
101	Production of Porous Biomaterials Based on Glass-Reinforced Hydroxyapatite Composites. Key Engineering Materials, 2002, 230-232, 483-486.	0.4	13
102	Densification route and mechanical properties of Si3N4–bioglass biocomposites. Biomaterials, 2002, 23, 857-862.	5.7	91
103	Wettability and surface charge of Si3N4–bioglass composites in contact with simulated physiological liquids. Biomaterials, 2002, 23, 4123-4129.	5.7	47
104	Si3N4-bioglass composites stimulate the proliferation of MG63 osteoblast-like cells and support the osteogenic differentiation of human bone marrow cells. Biomaterials, 2002, 23, 4897-4906.	5.7	67
105	Structural analysis of Si-substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy. Journal of Materials Science: Materials in Medicine, 2002, 13, 1123-1127.	1.7	159
106	Push-out testing and histological evaluation of glass reinforced hydroxyapatite composites implanted in the tibia of rabbits. Journal of Biomedical Materials Research Part B, 2001, 54, 463-469.	3.0	55
107	Push-out testing and histological evaluation of glass reinforced hydroxyapatite composites implanted in the tibia of rabbits., 2001, 54, 463.		1
108	Direct and indirect effects of P2O5 glass reinforced-hydroxyapatite composites on the growth and function of osteoblast-like cells. Biomaterials, 2000, 21, 1165-1172.	5.7	34

#	Article	lF	CITATIONS
109	Structural insights of glass-reinforced hydroxyapatite composites by Rietveld refinement. Biomaterials, 2000, 21, 1905-1910.	5.7	25
110	Microstructural dependence of Young's and shear moduli of P2O5 glass reinforced hydroxyapatite for biomedical applications. Biomaterials, 2000, 21, 749-754.	5 . 7	60
111	Glass-reinforced hydroxyapatite composites: fracture toughness and hardness dependence on microstructural characteristics. Biomaterials, 1999, 20, 2085-2090.	5.7	120
112	Glass-reinforced hydroxyapatite composites: Secondary phase proportions and densification effects on biaxial bending strength., 1999, 48, 734-740.		46
113	Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites., 1999, 45, 370-375.		112
114	Glass-reinforced hydroxyapatite: A comprehensive study of the effect of glass composition on the crystallography of the composite., 1998, 39, 244-251.		65
115	Flow cytometry for assessing biocompatibility. Journal of Biomedical Materials Research Part B, 1998, 41, 649-656.	3.0	40
116	Application of Glass Reinforced Hydroxyapatite Composite in the Treatment of Human Intrabony Periodontal Angular Defects – Two Case Reports. Solid State Phenomena, 0, 161, 93-101.	0.3	5
117	Guided Bone Regeneration Using Glass-Reinforced Hydroxyapatite and Collagen Membrane in the Treatment of Peri-Implantitis. Solid State Phenomena, 0, 207, 109-119.	0.3	1
118	Hybrid structures for Achilles' tendon repair. Polymers for Advanced Technologies, 0, , .	1.6	1