Piotr Pander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9145818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermally activated delayed fluorescent phenothiazine–dibenzo[a,j]phenazine–phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence. Chemical Science, 2017, 8, 2677-2686.	3.7	356
2	Dibenzo[<i>a,j</i>]phenazineâ€Cored Donor–Acceptor–Donor Compounds as Greenâ€ŧoâ€Red/NIR Thermall Activated Delayed Fluorescence Organic Light Emitters. Angewandte Chemie - International Edition, 2016, 55, 5739-5744.	у 7.2	303
3	Intramolecular Charge Transfer Controls Switching Between Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2018, 57, 16407-16411.	7.2	230
4	Intramolecular Charge Transfer Controls Switching Between Room Temperature Phosphorescence and Thermally Activated Delayed Fluorescence. Angewandte Chemie, 2018, 130, 16645-16649.	1.6	98
5	Realizing 20% External Quantum Efficiency in Electroluminescence with Efficient Thermally Activated Delayed Fluorescence from an Exciplex. ACS Applied Materials & Interfaces, 2019, 11, 13460-13471.	4.0	84
6	Exciplex Enhancement as a Tool to Increase OLED Device Efficiency. Journal of Physical Chemistry C, 2016, 120, 2070-2078.	1.5	81
7	Multicolor Luminescence Switching and Controllable Thermally Activated Delayed Fluorescence Turn on/Turn off in Carbazole–Quinoxaline–Carbazole Triads. Journal of Physical Chemistry Letters, 2018, 9, 1172-1177.	2.1	77
8	Dibenzo[<i>a,j</i>]phenazineâ€Cored Donor–Acceptor–Donor Compounds as Greenâ€ŧoâ€Red/NIR Thermall Activated Delayed Fluorescence Organic Light Emitters. Angewandte Chemie, 2016, 128, 5833-5838.	y _{1.6}	70
9	Dinuclear Design of a Pt(II) Complex Affording Highly Efficient Red Emission: Photophysical Properties and Application in Solution-Processible OLEDs. ACS Applied Materials & amp; Interfaces, 2019, 11, 8182-8193.	4.0	67
10	Thermally activated delayed fluorescence with a narrow emission spectrum and organic room temperature phosphorescence by controlling spin–orbit coupling and phosphorescence lifetime of metal-free organic molecules. Journal of Materials Chemistry C, 2018, 6, 5434-5443.	2.7	56
11	Unusual properties of electropolymerized 2,7- and 3,6- carbazole derivatives. Electrochimica Acta, 2014, 128, 430-438.	2.6	50
12	Interfacial TADF Exciplex as a Tool to Localize Excitons, Improve Efficiency, and Increase OLED Lifetime. ACS Applied Materials & Interfaces, 2018, 10, 40001-40007.	4.0	45
13	Extended ligand conjugation and dinuclearity as a route to efficient platinum-based near-infrared (NIR) triplet emitters and solution-processed NIR-OLEDs. Journal of Materials Chemistry C, 2021, 9, 127-135.	2.7	42
14	Triphenylamine disubstituted naphthalene diimide: elucidation of excited states involved in TADF and application in near-infrared organic light emitting diodes. Journal of Materials Chemistry C, 2018, 6, 8219-8225.	2.7	40
15	An iminodibenzyl–quinoxaline–iminodibenzyl scaffold as a mechanochromic and dual emitter: donor and bridge effects on optical properties. Chemical Communications, 2018, 54, 13857-13860.	2.2	39
16	Exceptionally fast radiative decay of a dinuclear platinum complex through thermally activated delayed fluorescence. Chemical Science, 2021, 12, 6172-6180.	3.7	37
17	Room temperature phosphorescence lifetime and spectrum tuning of substituted thianthrenes. Dyes and Pigments, 2017, 142, 315-322.	2.0	35
18	Observation of Dual Room Temperature Fluorescence–Phosphorescence in Air, in the Crystal Form of a Thianthrene Derivative. Journal of Physical Chemistry C, 2018, 122, 24958-24966.	1.5	31

PIOTR PANDER

#	Article	IF	CITATIONS
19	Thermally Activated Delayed Fluorescence in Polymer–Small-Molecule Exciplex Blends for Solution-Processed Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 28796-28802.	4.0	31
20	Electrochemically Induced Synthesis of Triphenylamine-based Polyhydrazones. Electrochimica Acta, 2017, 230, 10-21.	2.6	29
21	1,2,4-Triazines in the Synthesis of Bipyridine Bisphenolate ONNO Ligands and Their Highly Luminescent Tetradentate Pt(II) Complexes for Solution-Processable OLEDs. Inorganic Chemistry, 2018, 57, 3825-3832.	1.9	28
22	Electrochromic Properties of Novel Selenophene and Tellurophene Derivatives Based on Carbazole and Triphenylamine Core. Journal of Physical Chemistry C, 2017, 121, 11027-11036.	1.5	27
23	The role of dinuclearity in promoting thermally activated delayed fluorescence (TADF) in cyclometallated, N^C^N-coordinated platinum(<scp>ii</scp>) complexes. Journal of Materials Chemistry C, 2021, 9, 10276-10287.	2.7	26
24	Donor–Acceptor 1,2,4,5-Tetrazines Prepared by the Buchwald–Hartwig Cross-Coupling Reaction and Their Photoluminescence Turn-On Property by Inverse Electron Demand Diels–Alder Reaction. Journal of Organic Chemistry, 2020, 85, 3407-3416.	1.7	25
25	Homoleptic platinum(<scp>ii</scp>) complexes with pyridyltriazole ligands: excimer-forming phosphorescent emitters for solution-processed OLEDs. Journal of Materials Chemistry C, 2019, 7, 6592-6606.	2.7	24
26	Thermally Activated Delayed Fluorescence Mediated through the Upper Triplet State Manifold in Non-Charge-Transfer Star-Shaped Triphenylamine–Carbazole Molecules. Journal of Physical Chemistry C, 2018, 122, 23934-23942.	1.5	22
27	Intermolecular interactions in molecular crystals and their effect on thermally activated delayed fluorescence of helicene-based emitters. Journal of Materials Chemistry C, 2018, 6, 10557-10568.	2.7	20
28	Toward Efficient Toxic-Gas Detectors: Exploring Molecular Interactions of Sarin and Dimethyl Methylphosphonate with Metal-Centered Phthalocyanine Structures. Journal of Physical Chemistry C, 2020, 124, 6090-6102.	1.5	18
29	Electrochemistry and spectroelectrochemistry of polymers based on D-A-D and D-D-D bis(N-carbazolyl) monomers, effect of the donor/acceptor core on their properties. Electrochimica Acta, 2017, 257, 192-202.	2.6	16
30	Synthesis and characterization of chalcogenophene-based monomers with pyridine acceptor unit. Electrochimica Acta, 2016, 210, 773-782.	2.6	15
31	Solution processable small molecule based TADF exciplex OLEDs. Organic Electronics, 2018, 62, 168-173.	1.4	14
32	Diquinoline Derivatives as Materials for Potential Optoelectronic Applications. Journal of Physical Chemistry C, 2015, 119, 13129-13137.	1.5	11
33	Luminescent halogen-substituted 2-(<i>N</i> -arylimino)pyrrolyl boron complexes: the internal heavy-atom effect. Dalton Transactions, 2020, 49, 10185-10202.	1.6	11
34	Enhancement of thermally activated delayed fluorescence properties by substitution of ancillary halogen in a multiple resonance-like diplatinum(<scp>ii</scp>) complex. Journal of Materials Chemistry C, 2022, 10, 4851-4860.	2.7	11
35	Efficient UV Luminescence from Organic-Based Tamm Plasmon Structures Emitting in the Strong-Coupling Regime. Journal of Physical Chemistry C, 2020, 124, 21656-21663.	1.5	10
36	Acridone-amine D-A-D thermally activated delayed fluorescence emitters with narrow resolved electroluminescence and their electrochromic properties. Electrochimica Acta, 2021, 384, 138347.	2.6	10

PIOTR PANDER

#	Article	IF	CITATIONS
37	Time-resolved Photophysical Characterization of Triplet-harvesting Organic Compounds at an Oxygen-free Environment Using an iCCD Camera. Journal of Visualized Experiments, 2018, , .	0.2	8
38	Convenient Oneâ€Pot Synthesis of 1,2,3,4â€Thiatriazoles Towards a Novel Electron Acceptor for Highlyâ€Efficient Thermallyâ€Activated Delayedâ€Fluorescence Emitters. Chemistry - A European Journal, 2019, 25, 2457-2462.	1.7	7
39	Opposite Sign of Polarization Splitting in Ultrastrongly Coupled Organic Tamm Plasmon Structures. Journal of Physical Chemistry C, 2021, 125, 8376-8381.	1.5	7
40	Simultaneous enhancement of thermally activated delayed fluorescence and photoluminescence quantum yield <i>via</i> homoconjugation. Journal of Materials Chemistry C, 2022, 10, 6306-6313.	2.7	7
41	Benzannulation via the use of 1,2,4-triazines extends aromatic system of cyclometallated Pt(II) complexes to achieve candle light electroluminescence. Dyes and Pigments, 2021, 184, 108857.	2.0	4
42	Novel Easy to Synthesize Benzonitrile Compounds with Mixed Carbazole and Phenoxazine Substituents Exhibiting Dual Emission and TADF Properties. Journal of Physical Chemistry B, 2022, 126, 2740-2753.	1.2	3
43	Delayed Fluorescence by Triplet–Triplet Annihilation from Columnar Liquid Crystal Films. ACS Applied Electronic Materials, 2022, 4, 3486-3494.	2.0	2