
Juan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/914524/publications.pdf Version: 2024-02-01

ΙΠΑΝ ΗΠΑΝΟ

#	Article	IF	CITATIONS
1	A micropore-dominant N,P,S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid. Microporous and Mesoporous Materials, 2021, 316, 110951.	4.4	21
2	Polyaniline–poly(styrene sulfonate) hydrogelÂderived hierarchically porous N, S-codoped carbon for high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 8916-8931.	2.2	10
3	Reinforced polyaniline-dodecyl benzene sulfonate hydrogel with well-aligned fibrous morphology as durable electrode materials for Zn-ion battery. Synthetic Metals, 2021, 274, 116721.	3.9	13
4	Characterization on Modification and Biocompatibility of PCL Scaffold Prepared with Near-field Direct-writing Melt Electrospinning. Chemical Research in Chinese Universities, 2021, 37, 578-583.	2.6	4
5	Facile fabrication of MnO ₂ -embedded 3-D porous polyaniline composite hydrogel for supercapacitor electrode with high loading. High Performance Polymers, 2020, 32, 286-295.	1.8	11
6	Achieving mesoporous MnO2@polyaniline nanohybrids via a gas/liquid interfacial reaction between aniline and KMnO4 aqueous solution towards Zn-MnO2 battery. Synthetic Metals, 2020, 266, 116438.	3.9	20
7	Improvement and evenness of the side illuminating effect of side emitting optical fibers by fluorescent polyester fabric. Textile Reseach Journal, 2019, 89, 2010-2018.	2.2	4
8	Facile Synthesis of N,S-Codoped Hierarchically Porous Carbon with High Volumetric Pseudocapacitance. ACS Sustainable Chemistry and Engineering, 2019, 7, 16710-16719.	6.7	45
9	High-performance Si flexible anode with rGO substrate and Ca2+ crosslinked sodium alginate binder for lithium ion battery. Synthetic Metals, 2019, 247, 212-218.	3.9	22
10	Micro-lensed polymeric optical fiber by CO2 laser cutting. Journal of Laser Applications, 2018, 30, .	1.7	3
11	Flex Fatigue Behavior Of Plastic Optical Fibers With Low Bending Cycles. Autex Research Journal, 2015, 15, 112-115.	1.1	2
12	Enhancing side illumination of plastic optical fiber by using TiO2 particles and CO2 laser. Journal of Laser Applications, 2015, 27, .	1.7	3
13	Evaluation of Illumination Intensity of Plastic Optical Fibres with Tio ₂ Particles by Laser Treatment. Autex Research Journal, 2015, 15, 13-18.	1.1	13
14	Coating superfine down powder on polypropylene for the production of dyeable fibers. Fibers and Polymers, 2011, 12, 220-225.	2.1	9