
Suzan H M Rooijakkers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9145125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human monoclonal antibodies against Staphylococcus aureus surface antigens recognize in vitro and in vivo biofilm. ELife, 2022, 11, .	6.0	16
2	Thrombosis pathways in COVIDâ€19 versus influenzaâ€associated ARDS: a targeted proteomics approach. Journal of Thrombosis and Haemostasis, 2022, , .	3.8	4
3	Natural Human Immunity Against Staphylococcal Protein A Relies on Effector Functions Triggered by IgG3. Frontiers in Immunology, 2022, 13, 834711.	4.8	9
4	Multifaceted Activities of Seven Nanobodies against Complement C4b. Journal of Immunology, 2022, 208, 2207-2219.	0.8	5
5	Outer membrane permeabilization by the membrane attack complex sensitizes Gram-negative bacteria to antimicrobial proteins in serum and phagocytes. PLoS Pathogens, 2021, 17, e1009227.	4.7	20
6	Method for Depletion of IgG and IgM from Human Serum as Naive Complement Source. Methods in Molecular Biology, 2021, 2227, 21-32.	0.9	13
7	Use of Flow Cytometry to Evaluate Phagocytosis of Staphylococcus aureus by Human Neutrophils. Frontiers in Immunology, 2021, 12, 635825.	4.8	35
8	Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	52
9	C1q binding to surface-bound IgG is stabilized by C1r ₂ s ₂ proteases. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	32
10	Staphylococcus aureus Depends on Eap Proteins for Preventing Degradation of Its Phenol-Soluble Modulin Toxins by Neutrophil Serine Proteases. Frontiers in Immunology, 2021, 12, 701093.	4.8	7
11	Polymerization of C9 enhances bacterial cell envelope damage and killing by membrane attack complex pores. PLoS Pathogens, 2021, 17, e1010051.	4.7	20
12	Evolution of Colistin Resistance in the Klebsiella pneumoniae Complex Follows Multiple Evolutionary Trajectories with Variable Effects on Fitness and Virulence Characteristics. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	12
13	Bacterial killing by complement requires direct anchoring of membrane attack complex precursor C5b-7. PLoS Pathogens, 2020, 16, e1008606.	4.7	28
14	Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBS Letters, 2020, 594, 2556-2569.	2.8	66
15	Local structural plasticity of the Staphylococcus aureus evasion protein EapH1 enables engagement with multiple neutrophil serine proteases. Journal of Biological Chemistry, 2020, 295, 7753-7762.	3.4	6
16	Title is missing!. , 2020, 16, e1008606.		0
17	Title is missing!. , 2020, 16, e1008606.		0

#	Article	IF	CITATIONS
19	How the Membrane Attack Complex Damages the Bacterial Cell Envelope and Kills Gramâ€Negative Bacteria. BioEssays, 2019, 41, e1900074.	2.5	35
20	Bacterial killing by complement requires membrane attack complex formation via surfaceâ€bound C5 convertases. EMBO Journal, 2019, 38, .	7.8	76
21	Identification of a staphylococcal complement inhibitor with broad host specificity in equid Staphylococcus aureus strains. Journal of Biological Chemistry, 2018, 293, 4468-4477.	3.4	34
22	Evidence for multiple modes of neutrophil serine protease recognition by the EAP family of Staphylococcal innate immune evasion proteins. Protein Science, 2018, 27, 509-522.	7.6	14
23	Differential antibacterial control by neutrophil subsets. Blood Advances, 2018, 2, 1344-1355.	5.2	70
24	Complement and Bacterial Infections: From Molecular Mechanisms to Therapeutic Applications. Journal of Innate Immunity, 2018, 10, 455-464.	3.8	119
25	Functional Characterization of Alternative and Classical Pathway C3/C5 Convertase Activity and Inhibition Using Purified Models. Frontiers in Immunology, 2018, 9, 1691.	4.8	50
26	Group IIA-Secreted Phospholipase A ₂ in Human Serum Kills Commensal but Not Clinical Enterococcus faecium Isolates. Infection and Immunity, 2018, 86, .	2.2	13
27	Excretions/secretions from medicinal larvae (<i>Lucilia sericata</i>) inhibit complement activation by two mechanisms. Wound Repair and Regeneration, 2017, 25, 41-50.	3.0	22
28	Let's Tie the Knot: Marriage of Complement and Adaptive Immunity in Pathogen Evasion, for Better or Worse. Frontiers in Microbiology, 2017, 8, 89.	3.5	32
29	Staphylococcal protein Ecb impairs complement receptor-1 mediated recognition of opsonized bacteria. PLoS ONE, 2017, 12, e0172675.	2.5	19
30	Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface. PLoS Pathogens, 2017, 13, e1006531.	4.7	36
31	Staphylococcus aureusprotects its immune-evasion proteins against degradation by neutrophil serine proteases. Cellular Microbiology, 2016, 18, 536-545.	2.1	18
32	Complement resistance mechanisms of Klebsiella pneumoniae. Immunobiology, 2016, 221, 1102-1109.	1.9	87
33	Classical and lectin complement pathway activity in polyneuropathy associated with IgM monoclonal gammopathy. Journal of Neuroimmunology, 2016, 290, 76-79.	2.3	3
34	Novel Evasion Mechanisms of the Classical Complement Pathway. Journal of Immunology, 2016, 197, 2051-2060.	0.8	45
35	The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis. Microbiology (United Kingdom), 2016, 162, 1185-1194.	1.8	50
36	Molecular insights into the surface-specific arrangement of complement C5 convertase enzymes. BMC Biology, 2015, 13, 93.	3.8	54

#	Article	IF	CITATIONS
37	Contribution of the complement Membrane Attack Complex to the bactericidal activity of human serum. Molecular Immunology, 2015, 65, 328-335.	2.2	42
38	Effective Neutrophil Phagocytosis of <i>Aspergillus</i> <i>fumigatus</i> Is Mediated by Classical Pathway Complement Activation. Journal of Innate Immunity, 2015, 7, 364-374.	3.8	39
39	Discovery of Small Molecules for Fluorescent Detection of Complement Activation Product C3d. Journal of Medicinal Chemistry, 2015, 58, 9535-9545.	6.4	10
40	Neutrophil serine proteases in antibacterial defense. Current Opinion in Microbiology, 2015, 23, 42-48.	5.1	95
41	The Extracellular Adherence Protein from <i>Staphylococcus aureus</i> Inhibits the Classical and Lectin Pathways of Complement by Blocking Formation of the C3 Proconvertase. Journal of Immunology, 2014, 193, 6161-6171.	0.8	51
42	Novel Role of the Antimicrobial Peptide LL-37 in the Protection of Neutrophil Extracellular Traps against Degradation by Bacterial Nucleases. Journal of Innate Immunity, 2014, 6, 860-868.	3.8	120
43	Bacteria under stress by complement and coagulation. FEMS Microbiology Reviews, 2014, 38, 1146-1171.	8.6	105
44	Entrapment exploited. Trends in Microbiology, 2014, 22, 55-57.	7.7	2
45	<i>Staphylococcus aureus</i> secretes a unique class of neutrophil serine protease inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13187-13192.	7.1	111
46	The Classical Lancefield Antigen of Group A Streptococcus Is a Virulence Determinant with Implications for Vaccine Design. Cell Host and Microbe, 2014, 15, 729-740.	11.0	121
47	Characterization of rapid neutrophil extracellular trap formation and its cooperation with phagocytosis in human neutrophils. Discoveries, 2014, 2, e19.	2.3	18
48	Distinct localization of the complement C5b-9 complex on Gram-positive bacteria. Cellular Microbiology, 2013, 15, 1955-1968.	2.1	96
49	Intravital two-photon microscopy of host-pathogen interactions in a mouse model of <i>Staphylococcus aureus</i> skin abscess formation. Cellular Microbiology, 2013, 15, 891-909.	2.1	65
50	Optimal Complement-Mediated Phagocytosis ofPseudomonas aeruginosaby Monocytes Is Cystic Fibrosis Transmembrane Conductance Regulator–Dependent. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 463-470.	2.9	59
51	Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface. PLoS Pathogens, 2013, 9, e1003816.	4.7	103
52	<i>Staphylococcus aureus</i> Staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO Journal, 2012, 31, 3607-3619.	7.8	88
53	Secondary Cell Wall Polymers of Enterococcus faecalis Are Critical for Resistance to Complement Activation via Mannose-binding Lectin. Journal of Biological Chemistry, 2012, 287, 37769-37777.	3.4	37
54	<i>Yersinia enterocolitica</i> YadA Mediates Complement Evasion by Recruitment and Inactivation of C3 Products. Journal of Immunology, 2012, 189, 4900-4908.	0.8	38

SUZAN H M ROOIJAKKERS

#	Article	IF	CITATIONS
55	Staphylococcus aureus Virulence Is Enhanced by Secreted Factors That Block Innate Immune Defenses. Journal of Innate Immunity, 2012, 4, 301-311.	3.8	48
56	Pseudomonas aeruginosaAlkaline Protease Blocks Complement Activation via the Classical and Lectin Pathways. Journal of Immunology, 2012, 188, 386-393.	0.8	134
57	<i>Staphylococcus aureus</i> Metalloprotease Aureolysin Cleaves Complement C3 To Mediate Immune Evasion. Journal of Immunology, 2011, 186, 6445-6453.	0.8	155
58	M1T1 group A streptococcal pili promote epithelial colonization but diminish systemic virulence through neutrophil extracellular entrapment. Journal of Molecular Medicine, 2010, 88, 371-381.	3.9	56
59	Complement inhibition by gram-positive pathogens: molecular mechanisms and therapeutic implications. Journal of Molecular Medicine, 2010, 88, 115-120.	3.9	101
60	Functional basis for complement evasion by staphylococcal superantigen-like 7. Cellular Microbiology, 2010, 12, 1506-1516.	2.1	100
61	Staphylococcal Complement Inhibitor Modulates Phagocyte Responses by Dimerization of Convertases. Journal of Immunology, 2010, 184, 420-425.	0.8	34
62	Convertase Inhibitory Properties of Staphylococcal Extracellular Complement-binding Protein. Journal of Biological Chemistry, 2010, 285, 14973-14979.	3.4	36
63	Human Transferrin Confers Serum Resistance against Bacillus anthracis. Journal of Biological Chemistry, 2010, 285, 27609-27613.	3.4	33
64	Streptococcal Inhibitor of Complement Promotes Innate Immune Resistance Phenotypes of Invasive M1T1 Group A <i>Streptococcus</i> . Journal of Innate Immunity, 2010, 2, 587-595.	3.8	50
65	Immune evasion by Staphylococcus aureus conferred by iron-regulated surface determinant protein IsdH. Microbiology (United Kingdom), 2009, 155, 667-679.	1.8	60
66	Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nature Immunology, 2009, 10, 721-727.	14.5	205
67	Bacterial Complement Escape. Advances in Experimental Medicine and Biology, 2009, 666, 32-48.	1.6	11
68	Role of phosphatidylcholine saturation in preventing bile salt toxicity to gastrointestinal epithelia and membranes. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, 430-436.	2.8	34
69	Bacterial complement evasion. Molecular Immunology, 2007, 44, 23-32.	2.2	171
70	Staphylococcal Complement Inhibitor: Structure and Active Sites. Journal of Immunology, 2007, 179, 2989-2998.	0.8	74
71	Staphylococcal complement evasion by various convertase-blocking molecules. Journal of Experimental Medicine, 2007, 204, 2461-2471.	8.5	208
72	Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cellular Microbiology, 2006, 8, 1282-1293.	2.1	126

#	Article	IF	CITATIONS
73	The Innate Immune Modulators Staphylococcal Complement Inhibitor and Chemotaxis Inhibitory Protein of Staphylococcus aureus Are Located on β-Hemolysin-Converting Bacteriophages. Journal of Bacteriology, 2006, 188, 1310-1315.	2.2	511
74	Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nature Immunology, 2005, 6, 920-927.	14.5	363
75	Staphylococcal innate immune evasion. Trends in Microbiology, 2005, 13, 596-601.	7.7	228