
Santanu Kumar Pal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9144846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Triphenylene-based discotic liquid crystals: recent advances. Liquid Crystals, 2013, 40, 1769-1816.	0.9	127
2	Novel conducting nanocomposites: synthesis of triphenylene-covered gold nanoparticles and their insertion into a columnar matrix. Soft Matter, 2007, 3, 896.	1.2	121
3	A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. Journal of Materials Chemistry A, 2017, 5, 21820-21827.	5.2	115
4	Natural Sunlight Driven Oxidative Homocoupling of Amines by a Truxene-Based Conjugated Microporous Polymer. ACS Catalysis, 2018, 8, 6751-6759.	5.5	106
5	Self-assembled monolayers (SAMs) of alkoxycyanobiphenyl thiols on gold—A study of electron transfer reaction using cyclic voltammetry and electrochemical impedance spectroscopy. Journal of Colloid and Interface Science, 2006, 296, 195-203.	5.0	100
6	Microwave-assisted synthesis of novel imidazolium-based ionic liquid crystalline dimers. Tetrahedron Letters, 2006, 47, 8993-8997.	0.7	81
7	Applications of liquid crystals in biosensing and organic light-emitting devices: future aspects. Liquid Crystals, 2016, 43, 2009-2050.	0.9	75
8	Proton-Triggered Fluorescence Switching in Self-Exfoliated Ionic Covalent Organic Nanosheets for Applications in Selective Detection of Anions. ACS Applied Materials & Interfaces, 2020, 12, 13248-13255.	4.0	69
9	lonic discotic liquid crystals: synthesis and characterization of pyridinium bromides containing a triphenylene core. Tetrahedron Letters, 2005, 46, 4127-4130.	0.7	64
10	Synthesis and characterization of novel imidazolium-based ionic discotic liquid crystals with a triphenylene moiety. Tetrahedron Letters, 2005, 46, 2607-2610.	0.7	62
11	New perylene-based non-conventional discotic liquid crystals. RSC Advances, 2013, 3, 12060.	1.7	57
12	Aromatic π–π driven supergelation, aggregation induced emission and columnar self-assembly of star-shaped 1,2,4-oxadiazole derivatives. Journal of Materials Chemistry C, 2016, 4, 6546-6561.	2.7	56
13	Triphenylene-Based Room-Temperature Discotic Liquid Crystals: A New Class of Blue-Light-Emitting Materials with Long-Range Columnar Self-Assembly. Langmuir, 2016, 32, 1120-1126.	1.6	54
14	Star-shaped fluorescent liquid crystals derived from s-triazine and 1,3,4-oxadiazole moieties. Journal of Materials Chemistry C, 2016, 4, 6117-6130.	2.7	51
15	Liquid Crystal based Detection of Pb(II) Ions Using Spinach RNA as Recognition Probe. Langmuir, 2019, 35, 7816-7823.	1.6	49
16	Perylo[1,12- <i>b</i> , <i>c</i> , <i>d</i>] Thiophene Tetraesters: A New Class of Luminescent Columnar Liquid Crystals. Langmuir, 2015, 31, 8092-8100.	1.6	46
17	Multifunctional hexacatenar mesogen exhibiting supergelation, AIEE and its ability as a potential volatile acid sensor. Journal of Materials Chemistry C, 2016, 4, 9669-9673.	2.7	45
18	High Hole Mobility and Efficient Ambipolar Charge Transport in Heterocoronene-Based Ordered Columnar Discotics. Journal of the American Chemical Society, 2019, 141, 18799-18805.	6.6	45

#	Article	IF	CITATIONS
19	Tuning the self-assembly and photophysical properties of bi-1,3,4-thiadiazole derivatives through electron donor–acceptor interactions and their application in OLEDs. Journal of Materials Chemistry C, 2017, 5, 9345-9358.	2.7	44
20	Electroluminescent room temperature columnar liquid crystals based on bay-annulated perylene tetraesters. Journal of Materials Chemistry C, 2017, 5, 1767-1781.	2.7	42
21	Room temperature discotic liquid crystalline triphenylene-pentaalkynylbenzene dyads as an emitter in blue OLEDs and their charge transfer complexes with ambipolar charge transport behaviour. Journal of Materials Chemistry C, 2019, 7, 5724-5738.	2.7	42
22	Room-Temperature Columnar Liquid Crystals as Efficient Pure Deep-Blue Emitters in Organic Light-Emitting Diodes with an External Quantum Efficiency of 4.0%. ACS Applied Materials & Interfaces, 2019, 11, 8291-8300.	4.0	41
23	Adsorbate-Induced Ordering Transitions of Nematic Liquid Crystals on Surfaces Decorated with Aluminum Perchlorate Salts. ACS Applied Materials & amp; Interfaces, 2010, 2, 1857-1865.	4.0	40
24	Poly(<scp>l</scp> -lysine)-Coated Liquid Crystal Droplets for Cell-Based Sensing Applications. Journal of Physical Chemistry B, 2017, 121, 4247-4256.	1.2	38
25	A new strategy towards the synthesis of a room-temperature discotic nematic liquid crystal employing triphenylene and pentaalkynylbenzene units. Chemical Communications, 2017, 53, 3014-3017.	2.2	37
26	Liquid crystal based sensing device using a smartphone. Analyst, The, 2018, 143, 1046-1052.	1.7	37
27	The first examples of room temperature liquid crystal dimers based on cholesterol and pentaalkynylbenzene. Liquid Crystals, 2015, 42, 1250-1256.	0.9	36
28	Poly(<scp>l</scp> -lysine)-Coated Liquid Crystal Droplets for Sensitive Detection of DNA and Their Applications in Controlled Release of Drug Molecules. ACS Omega, 2017, 2, 7936-7945.	1.6	36
29	Novel triphenyleneâ€based ionic discotic liquid crystalline polymers. Liquid Crystals, 2008, 35, 381-384.	0.9	35
30	Phase transitions in novel disulphideâ€bridged alkoxycyanobiphenyl dimers. Liquid Crystals, 2007, 34, 135-141.	0.9	34
31	A Dual-Function Highly Crystalline Covalent Organic Framework for HCl Sensing and Visible-Light Heterogeneous Photocatalysis. Macromolecules, 2021, 54, 6595-6604.	2.2	34
32	AlE-active mechanoluminescent discotic liquid crystals for applications in OLEDs and bio-imaging. Chemical Communications, 2020, 56, 14279-14282.	2.2	33
33	A Simple Quantitative Method to Study Protein–Lipopolysaccharide Interactions by Using Liquid Crystals. ChemPhysChem, 2015, 16, 753-760.	1.0	32
34	Room temperature perylene based columnar liquid crystals as solid-state fluorescent emitters in solution-processable organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 12485-12494.	2.7	31
35	Bayâ€Annulated Perylene Tetraesters: A New Class of Discotic Liquid Crystals. ChemPhysChem, 2016, 17, 859-872.	1.0	30
36	Blue Luminescent Organic Light Emitting Diode Devices of a New Class of Star-Shaped Columnar Mesogens Exhibiting l€â€"΀ Driven Supergelation. Journal of Physical Chemistry C, 2018, 122, 23659-23674.	1.5	30

#	Article	IF	CITATIONS
37	Hydrogen-bond mediated columnar liquid crystalline assemblies of <i>C</i> ₃ -symmetric heptazine derivatives at ambient temperature. Soft Matter, 2018, 14, 6342-6352.	1.2	30
38	Films of Novel Mesogenic Molecules at Airâ^'Water and Airâ^'Solid Interfaces. Journal of Physical Chemistry B, 2007, 111, 11157-11161.	1.2	29
39	Dispersion of Thiol Stabilized Gold Nanoparticles in Lyotropic Liquid Crystalline Systems. Langmuir, 2007, 23, 3445-3449.	1.6	29
40	Heptazine: an Electronâ€Deficient Fluorescent Core for Discotic Liquid Crystals. Chemistry - A European Journal, 2017, 23, 14718-14722.	1.7	29
41	Contrasting effects of heterocycle substitution and branched tails in the arms of star-shaped molecules. New Journal of Chemistry, 2017, 41, 4680-4688.	1.4	28
42	pH-Driven Ordering Transitions in Liquid Crystal Induced by Conformational Changes of Cardiolipin. Langmuir, 2015, 31, 4741-4751.	1.6	27
43	Deepâ€Blue OLED Fabrication from Heptazine Columnar Liquid Crystal Based AlEâ€Active Skyâ€Blue Emitter. ChemistrySelect, 2018, 3, 7771-7777.	0.7	27
44	Chemically Responsive Gels Prepared from Microspheres Dispersed in Liquid Crystals. Small, 2009, 5, 2589-2596.	5.2	26
45	A room temperature discotic mesogenic dyad based-on triphenylene and pentaalkynylbenzene. Tetrahedron Letters, 2014, 55, 5836-5840.	0.7	26
46	Luminescent Conjugated Microporous Polymers for Selective Sensing and Ultrafast Detection of Picric Acid. ACS Applied Polymer Materials, 2022, 4, 2648-2655.	2.0	26
47	The first examples of terminally thiolâ€functionalized alkoxycyanobiphenyls. Liquid Crystals, 2005, 32, 659-661.	0.9	25
48	Colloid-in-liquid crystal gels formed via spinodal decomposition. Soft Matter, 2014, 10, 1602.	1.2	25
49	High hole mobility in room temperature discotic liquid crystalline tetrathienoanthracenes. Chemical Communications, 2020, 56, 5629-5632.	2.2	25
50	Self-assembled monolayers (SAMs) of alkoxycyanobiphenyl thiols on gold surface using a lyotropic liquid crystalline medium. Electrochimica Acta, 2007, 52, 2987-2997.	2.6	24
51	Protein triggered ordering transitions in poly (L-lysine)-coated liquid crystal emulsion droplets. Liquid Crystals, 2019, 46, 1318-1326.	0.9	24
52	Discotic-Decorated Gold Nanoparticles. Molecular Crystals and Liquid Crystals, 2005, 434, 251/[579]-258/[586].	0.4	23
53	Roomâ€Temperature Columnar Nematic and Soft Crystalline Columnar Assemblies of a New Series of Peryleneâ€Centred Disc Tetramers. Chemistry - A European Journal, 2017, 23, 12767-12778.	1.7	23
54	Synthesis and characterisation of novel rod–disc oligomers. Liquid Crystals, 2008, 35, 521-525.	0.9	22

#	Article	IF	CITATIONS
55	Liquid-Crystalline Star-Shaped Supergelator Exhibiting Aggregation-Induced Blue Light Emission. Langmuir, 2016, 32, 9301-9312.	1.6	22
56	Phase Behavior of a New Class of Anthraquinone-Based Discotic Liquid Crystals. Langmuir, 2017, 33, 13849-13860.	1.6	21
57	Room temperature columnar liquid crystalline self-assembly of acidochromic, luminescent, star-shaped molecules with cyanovinylene chromophores. Journal of Materials Chemistry C, 2018, 6, 1844-1852.	2.7	21
58	A new pathway for the formation of radial nematic droplets within a lipid-laden aqueous-liquid crystal interface. RSC Advances, 2014, 4, 18889-18893.	1.7	20
59	Threeâ€Ringâ€Based Roomâ€Temperature Bentâ€Core Nematic Compounds: Synthesis and Characterization. ChemPhysChem, 2015, 16, 2739-2744.	1.0	20
60	Roomâ€Temperature Oligomeric Discotic Nematic Liquid Crystals over a Wide Temperature Range: Structure–Property Relationships. Chemistry - A European Journal, 2017, 23, 10626-10631.	1.7	20
61	Orthogonal smectic and nematic ordering in three-ring polar bent-core molecules with anti-parallel arrangement. New Journal of Chemistry, 2017, 41, 5403-5411.	1.4	20
62	Columnar self-assembly of luminescent bent-shaped hexacatenars with a central pyridine core connected with substituted 1,3,4-oxadiazole and thiadiazoles. New Journal of Chemistry, 2018, 42, 3781-3798.	1.4	20
63	Differentiating Conformationally Distinct Alzheimer's Amyloid-β Oligomers Using Liquid Crystals. Journal of Physical Chemistry Letters, 2020, 11, 9012-9018.	2.1	19
64	High-performing D–ï€â€"A–ï€â€"D benzothiadiazole-based hybrid local and charge-transfer emitters in solution-processed OLEDs. Journal of Materials Chemistry C, 2020, 8, 17009-17015.	2.7	19
65	Synthesis of monohydroxy-functionalized triphenylene discotics: green chemistry approach. Tetrahedron, 2007, 63, 6874-6878.	1.0	18
66	Colloidâ€inâ€Liquid Crystal Gels that Respond to Biomolecular Interactions. Small, 2013, 9, 2785-2792.	5.2	18
67	The effect of regioisomerism on the mesomorphic and photophysical behavior of oxadiazole-based tris(N-salicylideneaniline)s: synthesis and characterization. New Journal of Chemistry, 2017, 41, 9908-9917.	1.4	18
68	Photoswitchable Bent-Core Nematic Liquid Crystals with Methylated Azobenzene Wing Exhibiting Optic-Field-Enhanced Fréedericksz Transition Effect. Journal of Physical Chemistry C, 2020, 124, 874-885.	1.5	18
69	Effects of Divalent Ligand Interactions on Surface-Induced Ordering of Liquid Crystals. Chemistry of Materials, 2010, 22, 5474-5482.	3.2	17
70	Splay and bend elastic constants in the nematic phase of some disulfide bridged dimeric compounds. Physical Review E, 2010, 82, 061703.	0.8	17
71	Detection of creatinine using surface-driven ordering transitions of liquid crystals. Liquid Crystals, 2016, 43, 1126-1134.	0.9	17
72	Influence of terminal halogen moieties on the phase structure of short-core achiral hockey-stick-shaped mesogens: design, synthesis and structure–property relationship. Molecular Systems Design and Engineering, 2018, 3, 839-852.	1.7	17

#	Article	IF	CITATIONS
73	Room-Temperature Columnar Liquid Crystalline Materials Based on Pyrazino[2,3-g]quinoxaline for Bright Green Organic Light-Emitting Diodes. ACS Applied Electronic Materials, 2019, 1, 1959-1969.	2.0	17
74	Probing Nanoscale Lipid–Protein Interactions at the Interface of Liquid Crystal Droplets. Nano Letters, 2021, 21, 4546-4553.	4.5	17
75	Hexacatenars Exhibiting ï∈-ï€ Driven Supergelation, Aggregation Induced Blue Light Emission and Thermochromism. ChemistrySelect, 2016, 1, 5107-5120.	0.7	16
76	Observation of disordered mesomorphism in three-ring-based highly polar bent-core molecules: design, synthesis and characterisation. Liquid Crystals, 2017, 44, 2247-2258.	0.9	16
77	Reversibly photoswitchable alkoxy azobenzenes connected benzenetricarboxamide discotic liquid crystals with perpetual long range columnar assembly. Organic and Biomolecular Chemistry, 2019, 17, 1947-1954.	1.5	16
78	Polar Switching and Cybotactic Nematic Ordering in 1,3,4-Thiadiazole-Based Short-Core Hockey Stick-Shaped Fluorescent Liquid Crystals. ACS Omega, 2019, 4, 7711-7722.	1.6	16
79	Unusual odd-even effects depending on the monomer chain length in nematic liquid crystals made of rod-like dimers. Europhysics Letters, 2009, 85, 36002.	0.7	15
80	Star-shaped π-gelators based on oxadiazole and thiadiazoles: a structure–property correlation. Molecular Systems Design and Engineering, 2017, 2, 478-489.	1.7	15
81	Microwave-assisted synthesis of novel oligomeric rod-disc hybrids. Tetrahedron Letters, 2012, 53, 6446-6450.	0.7	14
82	Highly Resolved Morphology of Roomâ€Temperature Columnar Liquid Crystals Derived from Triphenylene and Multialkynylbenzene Using Reconstructed Electron Density Maps. ChemistrySelect, 2017, 2, 6070-6077.	0.7	14
83	Observation of polar order and thermochromic behaviour in a chiral bent-core system exhibiting exotic mesophases due to superstructural frustration. Chemical Communications, 2018, 54, 3452-3455.	2.2	14
84	Structural organization and molecular self-assembly of a new class of polar and non-polar four-ring based bent-core molecules. Journal of Molecular Liquids, 2019, 295, 111687.	2.3	14
85	Gold nanoparticle-mediated signal amplification of liquid crystal biosensors for dopamine. Analyst, The, 2019, 144, 1110-1114.	1.7	14
86	Microwave-assisted synthesis of novel mixed tail rufigallol derivatives. Liquid Crystals, 2013, 40, 1364-1372.	0.9	13
87	Design of bio-molecular interfaces using liquid crystals demonstrating endotoxin interactions with bacterial cell wall components. RSC Advances, 2015, 5, 66476-66486.	1.7	13
88	Cybotactic nematic phase of achiral unsymmetrical bent-core liquid crystals – Quelling of polar ordering and the influence of terminal substituent moiety. Journal of Molecular Liquids, 2018, 257, 144-154.	2.3	13
89	Label-Free Imaging of Fibronectin Adsorption at Poly-(<scp>l</scp> -lysine)-Decorated Liquid Crystal Droplets. Journal of Physical Chemistry C, 2019, 123, 13642-13650.	1.5	13
90	Structural Understanding, Photoswitchability, and Supergelation of a New Class of Four Ring-Based Bent-Shaped Liquid Crystal. Journal of Physical Chemistry B, 2019, 123, 4443-4451.	1.2	13

#	Article	IF	CITATIONS
91	Luminescent Conductive Columnar ï€-Gelators for Fe(II) Sensing and Bio-Imaging Applications. Journal of Physical Chemistry B, 2020, 124, 10257-10265.	1.2	13
92	Microrheology to probe smectic clusters in bent-core nematic liquid crystals. Soft Matter, 2020, 16, 7556-7561.	1.2	13
93	Enabling efficient ambipolar charge carrier mobility in a H-bonded heptazine–triphenylene system forming segregated donor–acceptor columnar assemblies. Journal of Materials Chemistry C, 2021, 9, 8552-8561.	2.7	13
94	Rod–disc oligomeric liquid crystal based on 4-cyanobiphenyl and truxene core. Liquid Crystals, 2016, 43, 963-971.	0.9	12
95	Supramolecular self-assembly of thiol functionalized pentaalkynylbenzene-decorated gold nanoparticles exhibiting a room temperature discotic nematic liquid crystal phase. Journal of Materials Chemistry C, 2018, 6, 2303-2310.	2.7	12
96	Discs to a â€ [~] Bright' Future: Exploring Discotic Liquid Crystals in Organic Light Emitting Diodes in the Era of Newâ€Age Smart Materials. Chemical Record, 2022, 22, e202200056.	2.9	12
97	Unsymmetrically substituted room temperature discotic liquid crystals based on hexa– <i>peri–</i> hexabenzocoronene core. ChemistrySelect, 2016, 1, 880-885.	0.7	10
98	Ordering Transitions in Liquid Crystals Triggered by Bioactive Cyclic Amphiphiles: Potential Application in Label-Free Detection of Amyloidogenic Peptides. Journal of Physical Chemistry C, 2019, 123, 6526-6536.	1.5	10
99	Design of Aqueous-Liquid Crystal Interfaces To Monitor Protein Aggregation at Nanomolar Concentrations. Journal of Physical Chemistry C, 2019, 123, 1305-1312.	1.5	10
100	Electroluminescent Aggregation-Induced Emission-Active Discotic Liquid Crystals Based on Alkoxy Cyanostilbene-Functionalized Benzenetricarboxamide with Ambipolar Charge Transport. ACS Applied Electronic Materials, 2022, 4, 1163-1174.	2.0	10
101	Liquid Crystal Unveiled Interactions between Melittin and Phospholipids at Aqueous-Liquid Crystal Interface. ChemistrySelect, 2017, 2, 4779-4786.	0.7	9
102	TNF Induced Switching of Columnar Rectangular to Hexagonal Assemblies in a New Class of Triphenylene-Based Room Temperature Discotic Liquid Crystals. Journal of Physical Chemistry B, 2017, 121, 8593-8602.	1.2	9
103	Surfactin-Laden Aqueous–Liquid Crystal Interface Enabled Identification of Secondary Structure of Proteins. Journal of Physical Chemistry C, 2020, 124, 780-788.	1.5	9
104	Design, Synthesis and Characterization of Achiral Unsymmetrical Four-ring based Hockey-stick Shaped Liquid Crystals: Structure-Property relationship. Liquid Crystals, 2022, 49, 162-171.	0.9	9
105	Distinct interfacial ordering of liquid crystals observed by protein–lipid interactions that enabled the label-free sensing of cytoplasmic protein at the liquid crystal-aqueous interface. Analyst, The, 2021, 146, 7152-7159.	1.7	9
106	Synthesis and characterisation of novel alkoxycyanobiphenyl-substituted rufigallols. Liquid Crystals, 2013, 40, 281-292.	0.9	8
107	Chiral Bentâ€6haped Molecules Exhibiting Unusually Wide Range of Blue Liquidâ€Crystalline Phases and Multistimuliâ€Responsive Behavior. Chemistry - A European Journal, 2020, 26, 5859-5871.	1.7	8
108	Twist viscoelastic coefficient of novel thiol terminated alkoxy-cyanobiphenyl nematic liquid crystals. Journal of Chemical Physics, 2007, 126, 164901.	1.2	7

#	Article	IF	CITATIONS
109	Synthesis and characterization of novel azobenzene-based mesogens and their organization at the air–water and air–solid interfaces. RSC Advances, 2014, 4, 41371-41377.	1.7	7
110	Photo-responsive liquid crystals derived from azobenzene centered cholesterol-based tetramers. New Journal of Chemistry, 2018, 42, 8765-8772.	1.4	7
111	Photoâ€Responsive Behavior of Azobenzene Based Polar Hockeyâ€Stickâ€Shaped Liquid Crystals. ChemPhysChem, 2021, 22, 1361-1370.	1.0	7
112	Synthesis, Mesomorphism and Photoluminescence of a New Class of Anthracene-based Discotic Liquid Crystals. ChemistrySelect, 2016, 1, 5075-5082.	0.7	6
113	An electron-deficient tris(triazole)-based discotic liquid crystal that exhibits fast electron transport. Journal of Materials Chemistry C, 2021, 9, 5628-5632.	2.7	6
114	Observation of "de Vries-like―properties in bent-core molecules. Chemical Science, 2022, 13, 2249-2257.	3.7	6
115	Label-Free Detection of Ochratoxin A Using Aptamer as Recognition Probe at Liquid Crystal-Aqueous Interface. , 2022, 2, .		6
116	Chemical and physical aspects of recent bent-shaped liquid crystals exhibiting chiral and achiral mesophases. Liquid Crystals, 2022, 49, 1078-1146.	0.9	6
117	Liquid crystals as signal transducers for sensing of analytes using aptamer as a recognition probe. Liquid Crystals Reviews, 2021, 9, 65-84.	1.1	6
118	Molecular Engineering for the Development of a Discotic Nematic Mesophase and Solid-State Emitter in Deep-Blue OLEDs. Journal of Organic Chemistry, 2021, 86, 7256-7262.	1.7	5
119	Luminescent columnar discotics as highly efficient emitters in pure deep-blue OLEDs with an external quantum efficiency of 4.7%. Soft Matter, 2022, 18, 4214-4219.	1.2	5
120	Sucrose-mediated heat-stiffening microemulsion-based gel for enzyme entrapment and catalysis. Chemical Communications, 2020, 56, 10698-10701.	2.2	4
121	Green Chemistry Approach to the Synthesis of Liquid Crystalline Materials. Molecular Crystals and Liquid Crystals, 2008, 480, 287-294.	0.4	3
122	Discotic Liquid Crystalline Polymers: Structure and Chemistry. , 2016, , 583-615.		3
123	Design, synthesis and application of 2-chloro-3-nitrobenzoic acid based three-ring bent-core molecules with a terminal halogen moiety. Journal of Molecular Structure, 2020, 1202, 127383.	1.8	3
124	Functional Discotic Liquid Crystals Through Molecular Self-Assembly: Toward Efficient Charge Transport Systems. Nanostructure Science and Technology, 2022, , 89-130.	0.1	3
125	Deciphering Internal and External Ï€â€Conjugation in <i>C</i> ₃ â€5ymmetric Multiple Azobenzene Connected Systems in Selfâ€Assembly. Chemistry - A European Journal, 2022, 28, .	1.7	3

Lipid-induced structural turnover of water droplets to liquid crystal droplets. , 2014, , .

2

#	Article	IF	CITATIONS
127	Scholl reaction of hexaphenylbenzenes with hexakis-alkoxy substituents. Liquid Crystals, 2019, 46, 430-441.	0.9	2
128	Hydrogen bond assisted anchoring transitions in nematic liquid crystals at the aqueous interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126952.	2.3	2
129	Tailoring liquid crystals as vehicles for encapsulation and enzyme-triggered release. Journal of Materials Chemistry B, 2022, 10, 3032-3038.	2.9	2
130	Elucidating liquid crystal-aqueous interface for the study of cholesterol-mediated action of a β-barrel pore forming toxin. Soft Matter, 2022, 18, 5293-5301.	1.2	2
131	A new visual test for p-quinone and its relevance to the biodiesel industry. Analytical Methods, 2012, 4, 3542.	1.3	1
132	Structure–property relationships in lath-shaped triads based on multialkynylbenzene. Liquid Crystals, 2018, 45, 1279-1286.	0.9	1
133	Imine-based highly polar achiral unsymmetrical four-ring bent shaped liquid crystals: Design, synthesis and characterization. Journal of Molecular Structure, 2022, 1267, 133496.	1.8	1
134	Calamitic-Calamitic LC Dimers. , 0, , 10-58.		0
135	Calamitic-Cholesteric LC Dimers. , 0, , 59-117.		0
136	Discotic LC Dimers. , 0, , 118-184.		0
137	Bent-Core LC Dimers. , 0, , 185-224.		0
138	Ionic Discotic Liquid Crystals: Synthesis and Characterization of Pyridinium Bromides Containing a Triphenylene Core ChemInform, 2005, 36, no.	0.1	0
139	Liquid Crystals: Colloid-in-Liquid Crystal Gels that Respond to Biomolecular Interactions (Small) Tj ETQq1 1 0.784	314 rgBT , 5.2	Oyerlock 10
140	Frontispiece: Roomâ€īemperature Columnar Nematic and Soft Crystalline Columnar Assemblies of a New Series of Peryleneâ€Centred Disc Tetramers. Chemistry - A European Journal, 2017, 23, .	1.7	0
141	24th National Conference on Liquid Crystals (NCLC) at IISER Mohali, India. Liquid Crystals Today, 2018, 27, 31-37.	2.3	0
142	Liquid Crystalline Polymers Derived from Disc-Shaped Molecules. Polymers and Polymeric Composites, 2020, , 59-93.	0.6	0
143	Probing conducting interfaces by combined photoluminescence and transport measurements: LaVO3 and SrTiO3 interface as a case study. Physical Review B, 2021, 104, .	1.1	0
144	Liquid Crystalline Polymers Derived from Disc-Shaped Molecules. Polymers and Polymeric Composites, 2020, , 1-35.	0.6	0