Lorenzo Frigerio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9144399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multivesicular Bodies Mature from the <i>Trans</i> -Golgi Network/Early Endosome in <i>Arabidopsis</i> Â. Plant Cell, 2011, 23, 3463-3481.	6.6	236
2	Fluorescent Reporter Proteins for the Tonoplast and the Vacuolar Lumen Identify a Single Vacuolar Compartment in Arabidopsis Cells. Plant Physiology, 2007, 145, 1371-1382.	4.8	191
3	Protein quality control along the route to the plant vacuole Plant Cell, 1997, 9, 1869-1880.	6.6	188
4	Five <i>Arabidopsis</i> Reticulon Isoforms Share Endoplasmic Reticulum Location, Topology, and Membrane-Shaping Properties. Plant Cell, 2010, 22, 1333-1343.	6.6	173
5	Sorting of Phaseolin to the Vacuole Is Saturable and Requires a Short C-Terminal Peptide. Plant Cell, 1998, 10, 1031-1042.	6.6	171
6	Overexpression of a Plant Reticulon Remodels the Lumen of the Cortical Endoplasmic Reticulum but Does not Perturb Protein Transport. Traffic, 2008, 9, 94-102.	2.7	124
7	The plant endoplasmic reticulum: a cell-wide web. Biochemical Journal, 2009, 423, 145-155.	3.7	107
8	Mapping of Tonoplast Intrinsic Proteins in Maturing and Germinating Arabidopsis Seeds Reveals Dual Localization of Embryonic TIPs to the Tonoplast and Plasma Membrane. Molecular Plant, 2011, 4, 180-189.	8.3	102
9	Multiple Vacuoles in Plant Cells: Rule or Exception?. Traffic, 2008, 9, 1564-1570.	2.7	97
10	Ricin A chain without its partner B chain is degraded after retrotranslocation from the endoplasmic reticulum to the cytosol in plant cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14726-14731.	7.1	92
11	The Internal Propeptide of the Ricin Precursor Carries a Sequence-Specific Determinant for Vacuolar Sorting. Plant Physiology, 2001, 126, 167-175.	4.8	89
12	Putting the Squeeze on Plasmodesmata: A Role for Reticulons in Primary Plasmodesmata Formation. Plant Physiology, 2015, 168, 1563-1572.	4.8	89
13	Free Ricin A Chain, Proricin, and Native Toxin Have Different Cellular Fates When Expressed in Tobacco Protoplasts. Journal of Biological Chemistry, 1998, 273, 14194-14199.	3.4	86
14	Influence of KDEL on the Fate of Trimeric or Assembly-Defective Phaseolin: Selective Use of an Alternative Route to Vacuoles. Plant Cell, 2001, 13, 1109-1126.	6.6	81
15	In vivo imaging of the tonoplast intrinsic protein family in Arabidopsis roots. BMC Plant Biology, 2009, 9, 133.	3.6	81
16	Assembly, Secretion, and Vacuolar Delivery of a Hybrid Immunoglobulin in Plants. Plant Physiology, 2000, 123, 1483-1494.	4.8	78
17	Transmembrane domain length is responsible for the ability of a plant reticulon to shape endoplasmic reticulum tubules in vivo. Plant Journal, 2010, 64, 411-418.	5.7	78
18	HIV-1 p24-immunoglobulin fusion molecule: a new strategy for plant-based protein production. Plant Biotechnology Journal, 2006, 4, 195-207.	8.3	77

Lorenzo Frigerio

#	Article	IF	CITATIONS
19	Reticulomics: Protein-protein interaction studies with two plasmodesmata-localised reticulon family proteins identify binding partners enriched at plasmodesmata, ER and the plasma membrane. Plant Physiology, 2015, 169, pp.01153.2015.	4.8	76
20	ER-resident chaperone interactions with recombinant antibodies in transgenic plants. FEBS Journal, 2002, 269, 6042-6051.	0.2	75
21	Pathways for protein transport to seed storage vacuoles. Biochemical Society Transactions, 2005, 33, 1016.	3.4	65
22	Candidate Enzymes for Saffron Crocin Biosynthesis Are Localized in Multiple Cellular Compartments. Plant Physiology, 2018, 177, 990-1006.	4.8	64
23	Transport of ricin and 2S albumin precursors to the storage vacuoles of <i>Ricinus communis</i> endosperm involves the Golgi and VSRâ€like receptors. Plant Journal, 2004, 39, 821-833.	5.7	63
24	Intracellular sorting of the tail-anchored protein cytochrome b5 in plants: a comparative study using different isoforms from rabbit and Arabidopsis. Journal of Experimental Botany, 2007, 58, 1365-1379.	4.8	60
25	Tonoplast Aquaporins Facilitate Lateral Root Emergence. Plant Physiology, 2016, 170, 1640-1654.	4.8	53
26	Tatâ€dependent targeting of Rieske ironâ€sulphur proteins to both the plasma and thylakoid membranes in the cyanobacterium <i>Synechocystis</i> PCC6803. Molecular Microbiology, 2008, 70, 140-150.	2.5	52
27	Protein Storage Vacuoles Originate from Remodeled Preexisting Vacuoles in <i>Arabidopsis thaliana</i> . Plant Physiology, 2018, 177, 241-254.	4.8	52
28	An <scp>A</scp> rabidopsis reticulon and the atlastin homologue <scp><i>RHD3â€like2</i></scp> act together in shaping the tubular endoplasmic reticulum. New Phytologist, 2013, 197, 481-489.	7.3	50
29	FrontiERs: movers and shapers of the higher plant cortical endoplasmic reticulum. Current Opinion in Plant Biology, 2011, 14, 658-665.	7.1	49
30	A C-terminal amphipathic helix is necessary for the in vivo tubule-shaping function of a plant reticulon. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10902-10907.	7.1	49
31	Endoplasmic Reticulum-Associated Degradation of Ricin A Chain Has Unique and Plant-Specific Features. Plant Physiology, 2005, 137, 287-296.	4.8	47
32	The Role of CDC48 in the Retro-translocation of Non-ubiquitinated Toxin Substrates in Plant Cells. Journal of Biological Chemistry, 2008, 283, 15869-15877.	3.4	46
33	KMS1 and KMS2, two plant endoplasmic reticulum proteins involved in the early secretory pathway. Plant Journal, 2011, 66, 613-628.	5.7	45
34	Subcellular localization and interactions among rubber particle proteins from Hevea brasiliensis. Journal of Experimental Botany, 2017, 68, 5045-5055.	4.8	44
35	Expression, intracellular targeting and purification of HIV Nef variants in tobacco cells. BMC Biotechnology, 2007, 7, 12.	3.3	43
36	Endoplasmic reticulum-associated protein degradation. Seminars in Cell and Developmental Biology, 2000, 11, 159-164.	5.0	42

LORENZO FRIGERIO

#	Article	IF	CITATIONS
37	Aquaporins influence seed dormancy and germination in response to stress. Plant, Cell and Environment, 2019, 42, 2325-2339.	5.7	41
38	The C-terminal tetrapeptide of phaseolin is sufficient to target green fluorescent protein to the vacuole. Journal of Plant Physiology, 2001, 158, 499-503.	3.5	40
39	A Phaseolin Domain Involved Directly in Trimer Assembly Is a Determinant for Binding by the Chaperone BiP. Plant Cell, 2003, 15, 2464-2475.	6.6	40
40	Secretory Pathway Research: The More Experimental Systems the Better. Plant Cell, 2012, 24, 1316-1326.	6.6	39
41	ABCC transporters mediate the vacuolar accumulation of crocins in saffron stigmas. Plant Cell, 2019, 31, tpc.00193.2019.	6.6	36
42	Lack of a Vacuolar Sorting Receptor Leads to Non-Specific Missorting of Soluble Vacuolar Proteins in Arabidopsis Seeds. Traffic, 2008, 9, 408-416.	2.7	35
43	Sequence-specific, Golgi-dependent vacuolar targeting of castor bean 2S albumin. Plant Journal, 2003, 36, 711-719.	5.7	34
44	Following Vegetative to Embryonic Cellular Changes in Leaves of Arabidopsis Overexpressing <i>LEAFY COTYLEDON2</i> . Plant Physiology, 2013, 162, 1881-1896.	4.8	34
45	Coated vesicles in plant cells. Seminars in Cell and Developmental Biology, 2007, 18, 471-478.	5.0	32
46	The C-terminal Extension of a Hybrid Immunoglobulin A/G Heavy Chain Is Responsible for Its Golgi-mediated Sorting to the Vacuole. Molecular Biology of the Cell, 2003, 14, 2592-2602.	2.1	29
47	Anchorage to the cytosolic face of the endoplasmic reticulum membrane: a new strategy to stabilize a cytosolic recombinant antigen in plants. Plant Biotechnology Journal, 2008, 6, 560-575.	8.3	29
48	Tonoplast intrinsic proteins and vacuolar identity. Biochemical Society Transactions, 2010, 38, 769-773.	3.4	29
49	Arabidopsis Lunapark proteins are involved in <scp>ER</scp> cisternae formation. New Phytologist, 2018, 219, 990-1004.	7.3	29
50	The enemy within: ricin and plant cells. Journal of Experimental Botany, 1998, 49, 1473-1480.	4.8	27
51	Plant-based strategies aimed at expressing HIV antigens and neutralizing antibodies at high levels. Nef as a case study. Transgenic Research, 2009, 18, 499-512.	2.4	26
52	Glycoprotein degradation: Do sugars hold the key?. Current Biology, 2000, 10, R674-R677.	3.9	24
53	Enhancing the Secretion of a Glyco-Engineered Anti-CD20 scFv-Fc Antibody in Hairy Root Cultures. Biotechnology Journal, 2019, 14, 1800081.	3.5	24
54	The position of the proricin vacuolar targeting signal is functionally important. Plant Molecular Biology, 2003, 51, 631-641.	3.9	22

LORENZO FRIGERIO

#	Article	IF	CITATIONS
55	A functional antibody lackingN-linked glycans is efficiently folded, assembled and secreted by tobacco mesophyll protoplasts. Plant Biotechnology Journal, 2005, 3, 497-504.	8.3	22
56	Wetting of phase-separated droplets on plant vacuole membranes leads to a competition between tonoplast budding and nanotube formation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
57	Expression and localisation of a senescence-associated KDEL-cysteine protease from Lilium longiflorum tepals. Plant Science, 2014, 214, 38-46.	3.6	19
58	The N-terminal Ricin Propeptide Influences the Fate of Ricin A-chain in Tobacco Protoplasts. Journal of Biological Chemistry, 2006, 281, 23377-23385.	3.4	18
59	Geometric quantification of the plant endoplasmic reticulum. Journal of Microscopy, 2009, 234, 158-172.	1.8	17
60	The Hevea brasiliensis XIP aquaporin subfamily: genomic, structural and functional characterizations with relevance to intensive latex harvesting. Plant Molecular Biology, 2016, 91, 375-396.	3.9	16
61	Sorting of Phaseolin to the Vacuole Is Saturable and Requires a Short C-Terminal Peptide. Plant Cell, 1998, 10, 1031.	6.6	13
62	Ricin B Chain Targeted to the Endoplasmic Reticulum of Tobacco Protoplasts Is Degraded by a CDC48- and Vacuole-independent Mechanism*. Journal of Biological Chemistry, 2008, 283, 33276-33286.	3.4	13
63	An Exo2 Derivative Affects ER and Golgi Morphology and Vacuolar Sorting in a Tissueâ€Specific Manner in <i>Arabidopsis</i> . Traffic, 2011, 12, 1552-1562.	2.7	12
64	Expression and Regulation of aERD2, a Gene Encoding the KDEL Receptor Homolog in Plants, and Other Genes Encoding Proteins Involved in ER-Golgi Vesicular Trafficking. Plant Cell, 1995, 7, 667.	6.6	11
65	The enemy within: ricin and plant cells. Journal of Experimental Botany, 1998, 49, 1473-1480.	4.8	10
66	C-terminal extension of phaseolin with a short methionine-rich sequence can inhibit trimerisation and result in high instability. Plant Molecular Biology, 2003, 51, 885-894.	3.9	9
67	Diffusion of a membrane protein, Tat subunit Hcf106, is highly restricted within the chloroplast thylakoid network. FEBS Letters, 2009, 583, 3690-3696.	2.8	8
68	Disulfide formation in plant storage vacuoles permits assembly of a multimeric lectin. Biochemical Journal, 2010, 427, 513-521.	3.7	8
69	Endoplasmic reticulumââ,¬â€shape and function in stress translation. Frontiers in Plant Science, 2014, 5, 425.	3.6	8
70	A fluorescent reporter protein containing AtRMR1 domains is targeted to the storage and central vacuoles in Arabidopsis thaliana and tobacco leaf cells. Plant Cell Reports, 2011, 30, 1823-1833.	5.6	7
71	Plant peptidoglycan precursor biosynthesis: Conservation between moss chloroplasts and Gram-negative bacteria. Plant Physiology, 2022, 190, 165-179.	4.8	6
72	The Endomembrane System: A Green Perspective. Traffic, 2008, 9, 1563-1563.	2.7	5

Lorenzo Frigerio

#	Article	IF	CITATIONS
73	Monitoring calcium handling by the plant endoplasmic reticulum with a low a ²⁺ â€affinity targeted aequorin reporter. Plant Journal, 2022, 109, 1014-1027.	5.7	5
74	Fluorescent protein fusions to a human immunodeficiency virus monoclonal antibody reveal its intracellular transport through the plant endomembrane system. Plant Biotechnology Journal, 2008, 6, 649-662.	8.3	4
75	Reprogramming cells to study vacuolar development. Frontiers in Plant Science, 2013, 4, 493.	3.6	4
76	Response to Rogers Letter. Plant Physiology, 2008, 146, 1026.2-1027.	4.8	2
77	Protein Quality Control along the Route to the Plant Vacuole. Plant Cell, 1997, 9, 1869.	6.6	1
78	Influence of KDEL on the Fate of Trimeric or Assembly-Defective Phaseolin: Selective Use of an Alternative Route to Vacuoles. Plant Cell, 2001, 13, 1109.	6.6	1
79	The Synthesis of Ricinus communis Lectins. Plant Cell Monographs, 2010, , 191-205.	0.4	1
80	Long-Term Imaging of Endoplasmic Reticulum Morphology in Embryos During Seed Germination. Methods in Molecular Biology, 2018, 1691, 67-74.	0.9	1
81	Bacterial expression, purification and biophysical characterization of the smallest plant reticulon isoform, RTNLB13. Protein Expression and Purification, 2018, 152, 31-39.	1.3	1
82	The synthesis of phaseolin: a model for the study of the plant secretory pathway. Giornale Botanico Italiano (Florence, Italy: 1962), 1996, 130, 891-900.	0.0	0
83	ER Quality Control: A Function for Sugars in the Cytosol. Current Biology, 2002, 12, R663-R665.	3.9	Ο
84	The Assembly and Potential Applications of Immunoglobulins Expressed in Transgenic Plants. , 2003, , 363-370.		0
85	The plant endoplasmic reticulum and quality control of secretory proteins. Current Plant Science and Biotechnology in Agriculture, 1999, , 393-396.	0.0	0