Yue-kun Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9144354/publications.pdf

Version: 2024-02-01

203 papers 20,736 citations

81 h-index

5896

138 g-index

213 all docs

213 docs citations

213 times ranked 20390 citing authors

#	Article	IF	CITATIONS
1	A review of one-dimensional TiO ₂ nanostructured materials for environmental and energy applications. Journal of Materials Chemistry A, 2016, 4, 6772-6801.	10.3	793
2	High-Efficiency Photoelectrocatalytic Hydrogen Generation Enabled by Palladium Quantum Dots-Sensitized TiO ₂ Nanotube Arrays. Journal of the American Chemical Society, 2012, 134, 15720-15723.	13.7	571
3	A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 2017, 5, 31-55.	10.3	515
4	Robust superhydrophobic TiO ₂ @fabrics for UV shielding, self-cleaning and oil–water separation. Journal of Materials Chemistry A, 2015, 3, 2825-2832.	10.3	474
5	Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging. Journal of Materials Chemistry, 2012, 22, 7420.	6.7	441
6	Designing Superhydrophobic Porous Nanostructures with Tunable Water Adhesion. Advanced Materials, 2009, 21, 3799-3803.	21.0	439
7	Graphene aerogels for efficient energy storage and conversion. Energy and Environmental Science, 2018, 11, 772-799.	30.8	435
8	Robust fluorine-free superhydrophobic PDMS–ormosil@fabrics for highly effective self-cleaning and efficient oil–water separation. Journal of Materials Chemistry A, 2016, 4, 12179-12187.	10.3	432
9	Oneâ€dimensional TiO ₂ Nanotube Photocatalysts for Solar Water Splitting. Advanced Science, 2017, 4, 1600152.	11.2	405
10	A review of TiO 2 nanostructured catalysts for sustainable H 2 generation. International Journal of Hydrogen Energy, 2017, 42, 8418-8449.	7.1	309
11	Recent Advances in TiO ₂ â∈Based Nanostructured Surfaces with Controllable Wettability and Adhesion. Small, 2016, 12, 2203-2224.	10.0	278
12	Some Critical Structure Factors of Titanium Oxide Nanotube Array in Its Photocatalytic Activity. Environmental Science & Envir	10.0	274
13	A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning. Chemical Engineering Journal, 2020, 399, 125746.	12.7	264
14	Hierarchical TiO ₂ Nanoflakes and Nanoparticles Hybrid Structure for Improved Photocatalytic Activity. Journal of Physical Chemistry C, 2012, 116, 2772-2780.	3.1	262
15	Rational design of materials interface at nanoscale towards intelligent oil–water separation. Nanoscale Horizons, 2018, 3, 235-260.	8.0	262
16	Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications. Small, 2017, 13, 1602992.	10.0	259
17	Icephobic materials: Fundamentals, performance evaluation, and applications. Progress in Materials Science, 2019, 103, 509-557.	32.8	258
18	In Situ Surfaceâ€Modificationâ€Induced Superhydrophobic Patterns with Reversible Wettability and Adhesion. Advanced Materials, 2013, 25, 1682-1686.	21.0	249

#	Article	IF	Citations
19	Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Advances, 2015, 5, 79479-79510.	3.6	247
20	In situ plasmonic Ag nanoparticle anchored TiO ₂ nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. Nanoscale, 2016, 8, 5226-5234.	5. 6	243
21	Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. Journal of Hazardous Materials, 2010, 184, 855-863.	12.4	240
22	Crafting Musselâ€Inspired Metal Nanoparticleâ€Decorated Ultrathin Graphitic Carbon Nitride for the Degradation of Chemical Pollutants and Production of Chemical Resources. Advanced Materials, 2019, 31, e1806314.	21.0	239
23	Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation. Chemical Engineering Journal, 2017, 330, 26-35.	12.7	228
24	Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. Journal of Hazardous Materials, 2009, 171, 1045-1050.	12.4	223
25	Bioinspired Surfaces with Superwettability for Antiâ€king and Iceâ€Phobic Application: Concept, Mechanism, and Design. Small, 2017, 13, 1701867.	10.0	223
26	Recent Progress of Polysaccharideâ€Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Advanced Materials Interfaces, 2019, 6, 1900761.	3.7	222
27	Rational construction of highly transparent superhydrophobic coatings based on a non-particle, fluorine-free and water-rich system for versatile oil-water separation. Chemical Engineering Journal, 2018, 333, 621-629.	12.7	207
28	Constructing multifunctional MOF@rGO hydro-/aerogels by the self-assembly process for customized water remediation. Journal of Materials Chemistry A, 2017, 5, 11873-11881.	10.3	206
29	Bioinspired Surfaces with Superamphiphobic Properties: Concepts, Synthesis, and Applications. Advanced Functional Materials, 2018, 28, 1707415.	14.9	206
30	A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil–water separation ability. Journal of Materials Chemistry A, 2019, 7, 2122-2128.	10.3	205
31	Effects of the Structure of TiO[sub 2] Nanotube Array on Ti Substrate on Its Photocatalytic Activity. Journal of the Electrochemical Society, 2006, 153, D123.	2.9	200
32	A "PDMS-in-water―emulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature. Nanoscale Horizons, 2020, 5, 65-73.	8.0	193
33	4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomaterialia, 2019, 92, 19-36.	8.3	191
34	Advanced Materials with Special Wettability toward Intelligent Oily Wastewater Remediation. ACS Applied Materials & Divided Hamman (2011), 13, 67-87.	8.0	190
35	A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching. Chemical Engineering Journal, 2019, 355, 290-298.	12.7	183
36	Markedly Controllable Adhesion of Superhydrophobic Spongelike Nanostructure TiO ₂ Films. Langmuir, 2008, 24, 3867-3873.	3.5	182

#	Article	IF	CITATIONS
37	In situ formation of large-scale Ag/AgCl nanoparticles on layered titanate honeycomb by gas phase reaction for visible light degradation of phenol solution. Applied Catalysis B: Environmental, 2011, 106, 577-585.	20.2	182
38	Fabrication of uniform Ag/TiO2 nanotube array structures with enhanced photoelectrochemical performance. New Journal of Chemistry, 2010, 34, 1335.	2.8	181
39	Conductive Inks Based on a Lithium Titanate Nanotube Gel for Highâ€Rate Lithiumâ€lon Batteries with Customized Configuration. Advanced Materials, 2016, 28, 1567-1576.	21.0	178
40	Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochimica Acta, 2010, 55, 7211-7218.	5.2	175
41	Robust Flowerâ€Like TiO ₂ @Cotton Fabrics with Special Wettability for Effective Selfâ€Cleaning and Versatile Oil/Water Separation. Advanced Materials Interfaces, 2015, 2, 1500220.	3.7	175
42	Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2020, 8, 2934-2961.	10.3	170
43	Recent Advances in Siliconâ€Based Electrodes: From Fundamental Research toward Practical Applications. Advanced Materials, 2021, 33, e2004577.	21.0	168
44	Rational design of multi-layered superhydrophobic coating on cotton fabrics for UV shielding, self-cleaning and oil-water separation. Materials and Design, 2017, 134, 342-351.	7.0	164
45	Liquid mobility on superwettable surfaces for applications in energy and the environment. Journal of Materials Chemistry A, 2019, 7, 38-63.	10.3	161
46	Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells. Energy and Environmental Science, 2013, 6, 1615.	30.8	160
47	Bioinspired Patterning with Extreme Wettability Contrast on TiO ₂ Nanotube Array Surface: A Versatile Platform for Biomedical Applications. Small, 2013, 9, 2945-2953.	10.0	159
48	3D Au-decorated BiMoO ₆ nanosheet/TiO ₂ nanotube array heterostructure with enhanced UV and visible-light photocatalytic activity. Journal of Materials Chemistry A, 2017, 5, 16412-16421.	10.3	150
49	Superhydrophilic–superhydrophobic micropattern on TiO2 nanotube films by photocatalytic lithography. Electrochemistry Communications, 2008, 10, 387-391.	4.7	147
50	Progress on particulate matter filtration technology: basic concepts, advanced materials, and performances. Nanoscale, 2020, 12, 437-453.	5.6	145
51	Electrochemically multi-anodized TiO2 nanotube arrays for enhancing hydrogen generation by photoelectrocatalytic water splitting. Electrochimica Acta, 2010, 55, 4776-4782.	5.2	132
52	A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chemical Engineering Journal, 2020, 385, 123912.	12.7	128
53	Immobilization of Pt Nanoparticles via Rapid and Reusable Electropolymerization of Dopamine on TiO ₂ Nanotube Arrays for Reversible SERS Substrates and Nonenzymatic Glucose Sensors. Small, 2017, 13, 1604240.	10.0	125
54	A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals. Electrochimica Acta, 2010, 55, 8717-8723.	5.2	122

#	Article	IF	CITATIONS
55	Understanding the Role of Nanostructures for Efficient Hydrogen Generation on Immobilized Photocatalysts. Advanced Energy Materials, 2013, 3, 1368-1380.	19.5	122
56	Progress in TiO $<$ sub $>$ 2 $<$ /sub $>$ nanotube coatings for biomedical applications: a review. Journal of Materials Chemistry B, 2018, 6, 1862-1886.	5.8	121
57	Mechanically Resistant and Sustainable Cellulose-Based Composite Aerogels with Excellent Flame Retardant, Sound-Absorption, and Superantiwetting Ability for Advanced Engineering Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 927-936.	6.7	120
58	Advanced colloidal lithography: From patterning to applications. Nano Today, 2018, 22, 36-61.	11.9	120
59	Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review. Nanotechnology Reviews, 2016, 5, .	5.8	118
60	Lightâ€Driven Sustainable Hydrogen Production Utilizing TiO ₂ Nanostructures: A Review. Small Methods, 2019, 3, 1800184.	8.6	118
61	Enhanced photocatalytic performances of n-TiO ₂ nanotubes by uniform creation of p–n heterojunctions with p-Bi ₂ O ₃ quantum dots. Nanoscale, 2015, 7, 11552-11560.	5.6	117
62	Multifunctional Superamphiphobic TiO ₂ Nanostructure Surfaces with Facile Wettability and Adhesion Engineering. Small, 2014, 10, 4865-4873.	10.0	113
63	TiO ₂ nanotube platforms for smart drug delivery: a review. International Journal of Nanomedicine, 2016, Volume 11, 4819-4834.	6.7	113
64	Photothermal and Joule heating-assisted thermal management sponge for efficient cleanup of highly viscous crude oil. Journal of Hazardous Materials, 2021, 403, 124090.	12.4	109
65	Topographic effect on human induced pluripotent stem cells differentiation towards neuronal lineage. Biomaterials, 2013, 34, 8131-8139.	11.4	108
66	Facile construction of robust fluorine-free superhydrophobic TiO 2 @fabrics with excellent anti-fouling, water-oil separation and UV-protective properties. Materials and Design, 2017, 128, 1-8.	7.0	107
67	A novel electrochemical strategy for improving blood compatibility of titanium-based biomaterials. Colloids and Surfaces B: Biointerfaces, 2010, 79, 309-313.	5.0	106
68	Magnetic responsive and flexible composite superhydrophobic photothermal film for passive anti-icing/active deicing. Chemical Engineering Journal, 2022, 427, 130922.	12.7	105
69	Understanding the Role of Dynamic Wettability for Condensate Microdrop Selfâ€Propelling Based on Designed Superhydrophobic TiO ₂ Nanostructures. Small, 2017, 13, 1600687.	10.0	101
70	Uniform carbon dots@TiO ₂ nanotube arrays with full spectrum wavelength light activation for efficient dye degradation and overall water splitting. Nanoscale, 2017, 9, 16046-16058.	5.6	100
71	Transparent Antibacterial Nanofiber Air Filters with Highly Efficient Moisture Resistance for Sustainable Particulate Matter Capture. IScience, 2019, 19, 214-223.	4.1	100
72	Silk fibroin-derived nitrogen-doped carbon quantum dots anchored on TiO2 nanotube arrays for heterogeneous photocatalytic degradation and water splitting. Nano Energy, 2020, 78, 105313.	16.0	100

#	Article	IF	CITATIONS
73	Recent Progress in Fabrication and Applications of Superhydrophobic Coating on Cellulose-Based Substrates. Materials, 2016, 9, 124.	2.9	99
74	Efficiently texturing hierarchical superhydrophobic fluoride-free translucent films by AACVD with excellent durability and self-cleaning ability. Journal of Materials Chemistry A, 2018, 6, 17633-17641.	10.3	99
75	Recent advances on smart TiO ₂ nanotube platforms for sustainable drug delivery applications. International Journal of Nanomedicine, 2017, Volume 12, 151-165.	6.7	97
76	Recent advances in fabricating durable superhydrophobic surfaces: a review in the aspects of structures and materials. Materials Chemistry Frontiers, 2021, 5, 1655-1682.	5.9	94
77	Vertically-aligned Pt-decorated MoS2 nanosheets coated on TiO2 nanotube arrays enable high-efficiency solar-light energy utilization for photocatalysis and self-cleaning SERS devices. Nano Energy, 2020, 71, 104579.	16.0	92
78	Namib desert beetle inspired special patterned fabric with programmable and gradient wettability for efficient fog harvesting. Journal of Materials Science and Technology, 2021, 61, 85-92.	10.7	92
79	Durable antibacterial and UV-protective Ag/TiO ₂ @fabrics for sustainable biomedical application. International Journal of Nanomedicine, 2017, Volume 12, 2593-2606.	6.7	90
80	CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells. Electrochimica Acta, 2012, 79, 175-181.	5.2	87
81	TiO ₂ nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application. Journal of Materials Chemistry A, 2015, 3, 3491-3499.	10.3	87
82	Controllable wettability and adhesion on bioinspired multifunctional TiO ₂ nanostructure surfaces for liquid manipulation. Journal of Materials Chemistry A, 2014, 2, 18531-18538.	10.3	84
83	In-situ formation of unsaturated defect sites on converted CoNi alloy/Co-Ni LDH to activate MoS2 nanosheets for pH-universal hydrogen evolution reaction. Chemical Engineering Journal, 2021, 412, 128556.	12.7	80
84	Photogenerated cathodic protection of flower-like, nanostructured, N-doped TiO2 film on stainless steel. Surface and Coatings Technology, 2010, 205, 557-564.	4.8	79
85	Constructing Mechanochemical Durable and Self-Healing Superhydrophobic Surfaces. ACS Omega, 2020, 5, 986-994.	3.5	79
86	Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting. International Journal of Hydrogen Energy, 2012, 37, 6438-6446.	7.1	78
87	Synthesis of Nanostructured Silver/Silver Halides on Titanate Surfaces and Their Visible-Light Photocatalytic Performance. ACS Applied Materials & Interfaces, 2012, 4, 438-446.	8.0	77
88	MoS ₂ Quantum Dots@TiO ₂ Nanotube Arrays: An Extended-Spectrum-Driven Photocatalyst for Solar Hydrogen Evolution. ChemSusChem, 2018, 11, 1708-1721.	6.8	77
89	Defective black Ti3+ self-doped TiO2 and reduced graphene oxide composite nanoparticles for boosting visible-light driven photocatalytic and photoelectrochemical activity. Applied Surface Science, 2019, 467-468, 45-55.	6.1	77
90	Self-organized TiO2 nanotubes in mixed organic–inorganic electrolytes and their photoelectrochemical performance. Electrochimica Acta, 2009, 54, 6536-6542.	5.2	76

#	Article	IF	CITATIONS
91	Optical and electrical characterization of TiO2 nanotube arrays on titanium substrate. Applied Surface Science, 2005, 252, 1101-1106.	6.1	75
92	Hydrogel materials for sustainable water resources harvesting & Department: Synthesis, mechanism and applications. Chemical Engineering Journal, 2022, 439, 135756.	12.7	75
93	Bioinspired Sootâ€Deposited Janus Fabrics for Sustainable Solar Steam Generation with Saltâ€Rejection. Global Challenges, 2019, 3, 1800117.	3.6	73
94	Multifunctional wettability patterns prepared by laser processing on superhydrophobic TiO ₂ nanostructured surfaces. Journal of Materials Chemistry B, 2015, 3, 342-347.	5.8	72
95	Molybdenum sulfide cocatalyst activation upon photodeposition of cobalt for improved photocatalytic hydrogen production activity of ZnCdS. Chemical Engineering Journal, 2021, 425, 131478.	12.7	72
96	Sonoelectrochemical synthesis of highly photoelectrochemically active TiO ₂ nanotubes by incorporating CdS nanoparticles. Nanotechnology, 2009, 20, 295601.	2.6	71
97	Visible-light plasmonic photocatalyst anchored on titanate nanotubes: a novel nanohybrid with synergistic effects of adsorption and degradation. RSC Advances, 2012, 2, 9406.	3.6	70
98	Controlled grafting superhydrophobic cellulose surface with environmentally-friendly short fluoroalkyl chains by ATRP. Materials and Design, 2015, 85, 815-822.	7.0	66
99	Sub-micron silk fibroin film with high humidity sensibility through color changing. RSC Advances, 2017, 7, 17889-17897.	3.6	66
100	A superhydrophobic TPU/CNTs@SiO2 coating with excellent mechanical durability and chemical stability for sustainable anti-fouling and anti-corrosion. Chemical Engineering Journal, 2022, 434, 134605.	12.7	66
101	Bioinspired TiO2 Nanostructure Films with Special Wettability and Adhesion for Droplets Manipulation and Patterning. Scientific Reports, 2013, 3, 3009.	3.3	64
102	Highly Flexible and Porous Nanoparticle-Loaded Films for Dye Removal by Graphene Oxide–Fungus Interaction. ACS Applied Materials & Interfaces, 2016, 8, 34638-34647.	8.0	63
103	Underwater, Multifunctional Superhydrophobic Sensor for Human Motion Detection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4740-4749.	8.0	63
104	Fog Harvesting Devices Inspired from Single to Multiple Creatures: Current Progress and Future Perspective. Advanced Functional Materials, 2022, 32, .	14.9	62
105	Particulate Matter Capturing via Naturally Dried ZIF-8/Graphene Aerogels under Harsh Conditions. IScience, 2019, 16, 133-144.	4.1	60
106	A facile method for synthesis of Ag/TiO2 nanostructures. Materials Letters, 2008, 62, 3688-3690.	2.6	59
107	Multifunctional superhydrophobic composite materials with remarkable mechanochemical robustness, stain repellency, oil-water separation and sound-absorption properties. Chemical Engineering Journal, 2019, 358, 1610-1619.	12.7	59
108	Silver decorated titanate/titania nanostructures for efficient solar driven photocatalysis. Journal of Solid State Chemistry, 2012, 189, 117-122.	2.9	58

#	Article	IF	Citations
109	Hierarchical SiO ₂ @Bi ₂ O ₃ core/shell electrospun fibers for infrared stealth camouflage. Journal of Materials Chemistry C, 2015, 3, 345-351.	5. 5	54
110	Charged graphene aerogel filter enabled superior particulate matter removal efficiency in harsh environment. Chemical Engineering Journal, 2020, 395, 125086.	12.7	53
111	Selective formation of ordered arrays of octacalcium phosphate ribbons on TiO2 nanotube surface by template-assisted electrodeposition. Colloids and Surfaces B: Biointerfaces, 2010, 76, 117-122.	5.0	51
112	Robust Superhydrophobic rGO/PPy/PDMS Coatings on a Polyurethane Sponge for Underwater Pressure and Temperature Sensing. ACS Applied Materials & Interfaces, 2021, 13, 53271-53281.	8.0	51
113	In Situ Mechanistic Investigation at the Liquid/Solid Interface by Attenuated Total Reflectance FTIR: Ethanol Photo-Oxidation over Pristine and Platinized TiO ₂ (P25). ACS Catalysis, 2011, 1, 864-871.	11.2	49
114	Bioinspired Porous Octacalcium Phosphate/Silk Fibroin Composite Coating Materials Prepared by Electrochemical Deposition. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5634-5642.	8.0	49
115	Recent Progress on the Superhydrophobic Surfaces with Special Adhesion: From Natural to Biomimetic to Functional. Journal of Nanoengineering and Nanomanufacturing, 2011, 1, 18-34.	0.3	49
116	Hierarchical layered titanate microspherulite: formation by electrochemical spark discharge spallation and application in aqueous pollutant treatment. Journal of Materials Chemistry, 2010, 20, 10169.	6.7	48
117	Flame retardance and thermal stability of wool fabric treated by boron containing silica sols. Materials and Design, 2015, 85, 796-799.	7.0	48
118	A multifunctional and environmentally-friendly method to fabricate superhydrophilic and self-healing coatings for sustainable antifogging. Chemical Engineering Journal, 2021, 409, 128228.	12.7	48
119	Synthesis of silver nanorods and nanowires by tartrate-reduced route in aqueous solutions. Materials Chemistry and Physics, 2006, 96, 217-222.	4.0	47
120	Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning. Cellulose, 2017, 24, 1129-1141.	4.9	46
121	Green Synthesis of Robust Superhydrophobic Antibacterial and UVâ€Blocking Cotton Fabrics by a Dualâ€Stage Silanization Approach. Advanced Materials Interfaces, 2019, 6, 1900032.	3.7	46
122	Controllable construction of ZnO/TiO2patterningnanostructures by superhydrophilic/superhydrophobic templates. New Journal of Chemistry, 2010, 34, 44-51.	2.8	44
123	Co-solvent induced self-roughness superhydrophobic coatings with self-healing property for versatile oil-water separation. Applied Surface Science, 2018, 459, 512-519.	6.1	44
124	An effective and low-consumption foam finishing strategy for robust functional fabrics with on-demand special wettability. Chemical Engineering Journal, 2021, 426, 131245.	12.7	44
125	Ultrafast Synthesis of Layered Titanate Microspherulite Particles by Electrochemical Spark Discharge Spallation. Chemistry - A European Journal, 2010, 16, 7704-7708.	3.3	43
126	SERS study of Ag nanoparticles electrodeposited on patterned TiO ₂ nanotube films. Journal of Raman Spectroscopy, 2011, 42, 986-991.	2.5	42

#	Article	IF	Citations
127	Bioinspired structural and functional designs towards interfacial solar steam generation for clean water production. Materials Chemistry Frontiers, 2021, 5, 1510-1524.	5.9	42
128	Fibrous and flexible supercapacitors comprising hierarchical nanostructures with carbon spheres and graphene oxide nanosheets. Journal of Materials Chemistry A, 2015, 3, 12761-12768.	10.3	41
129	Polydopamine-Inspired Design and Synthesis of Visible-Light-Driven Ag NPs@C@elongated TiO ₂ NTs Core–Shell Nanocomposites for Sustainable Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2019, 7, 558-568.	6.7	41
130	Mechanically Reinforced Localized Structure Design to Stabilize Solid–Electrolyte Interface of the Composited Electrode of Si Nanoparticles and TiO ₂ Nanotubes. Small, 2020, 16, e2002094.	10.0	41
131	Ion regulation of hollow nickel cobalt layered double hydroxide nanocages derived from ZIF-67 for High-Performance supercapacitors. Applied Surface Science, 2022, 596, 153582.	6.1	41
132	Electrophoretic deposition of titanate nanotube films with extremely large wetting contrast. Electrochemistry Communications, 2009, 11, 2268-2271.	4.7	39
133	Durable easy-cleaning and antibacterial cotton fabrics using fluorine-free silane coupling agents and CuO nanoparticles. Nano Materials Science, 2020, 2, 281-291.	8.8	39
134	Hydroxyapatite-modified micro/nanostructured titania surfaces with different crystalline phases for osteoblast regulation. Bioactive Materials, 2021, 6, 1118-1129.	15.6	38
135	Enhanced photoelectrochemical activities of a nanocomposite film with a bamboo leaf-like structured TiO ₂ layer on TiO ₂ nanotube arrays. Chemical Communications, 2011, 47, 2598-2600.	4.1	37
136	Advances in particulate matter filtration: Materials, performance, and application. Green Energy and Environment, 2023, 8, 673-697.	8.7	37
137	Fabrication, Modification, and Emerging Applications of TiO2Nanotube Arrays by Electrochemical Synthesis: A Review. International Journal of Photoenergy, 2013, 2013, 1-19.	2.5	36
138	Interfacial reinforcement structure design towards ultrastable lithium storage in MoS2-based composited electrode. Chemical Engineering Journal, 2021, 416, 129094.	12.7	36
139	Noble-metal-free metallic MoC combined with CdS for enhanced visible-light-driven photocatalytic hydrogen evolution. Journal of Cleaner Production, 2021, 322, 129018.	9.3	36
140	<i>In vivo</i> and <i>in vitro</i> efficient textile wastewater remediation by <i>Aspergillus niger</i> biosorbent. Nanoscale Advances, 2019, 1, 168-176.	4.6	35
141	One-pot loading of cadmium sulfide onto tungsten carbide for efficient photocatalytic H2 evolution under visible light irradiation. Chemical Engineering Journal, 2022, 434, 134689.	12.7	35
142	Reducing Oxygen Evolution Reaction Overpotential in Cobaltâ€Based Electrocatalysts via Optimizing the "Microparticlesâ€inâ€Spider Web―Electrode Configurations. Small, 2020, 16, e1907029.	10.0	34
143	Rational designed structured superhydrophobic iron oxide surface towards sustainable anti-corrosion and self-cleaning. Chemical Engineering Journal, 2021, 416, 127768.	12.7	34
144	Superhydrophilic–Superhydrophobic Template: A Simple Approach to Micro- and Nanostructure Patterning of TiO[sub 2] Films. Journal of the Electrochemical Society, 2009, 156, D480.	2.9	33

#	Article	IF	CITATIONS
145	Boosting heterojunction interaction in electrochemical construction of MoS2 quantum dots@TiO2 nanotube arrays for highly effective photoelectrochemical performance and electrocatalytic hydrogen evolution. Electrochemistry Communications, 2018, 93, 152-157.	4.7	33
146	Experimental investigation of the anti-soiling performances of different wettability of transparent coatings: Superhydrophilic, hydrophilic, hydrophobic and superhydrophobic coatings. Solar Energy Materials and Solar Cells, 2021, 225, 111053.	6.2	33
147	Smart surfaces with reversibly switchable wettability: Concepts, synthesis and applications. Advances in Colloid and Interface Science, 2022, 300, 102584.	14.7	33
148	TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation. Journal of Materials Science and Technology, 2020, 39, 28-38.	10.7	32
149	In-situ synthesis of monodispersed Cu O heterostructure on porous carbon monolith for exceptional removal of gaseous Hg0. Applied Catalysis B: Environmental, 2020, 265, 118556.	20.2	32
150	Fog catcher brushes with environmental friendly slippery alumina micro-needle structured surface for efficient fog-harvesting. Journal of Cleaner Production, 2021, 315, 127862.	9.3	32
151	Micropatterning Extracellular Matrix Proteins on Electrospun Fibrous Substrate Promote Human Mesenchymal Stem Cell Differentiation Toward Neurogenic Lineage. ACS Applied Materials & Samp; Interfaces, 2016, 8, 563-573.	8.0	31
152	Oxygen-deficient bismuth tungstate and bismuth oxide composite photoanode with improved photostability. Science Bulletin, 2018, 63, 990-996.	9.0	29
153	Solar-assisted isotropically thermoconductive sponge for highly viscous crude oil spill remediation. IScience, 2021, 24, 102665.	4.1	29
154	Fabrication of patterned CdS/TiO2 heterojunction by wettability template-assisted electrodeposition. Materials Letters, 2010, 64, 1309-1312.	2.6	28
155	Multi-functional hybrid protonated titanate nanobelts with tunable wettability. Soft Matter, 2011, 7, 6313.	2.7	28
156	Controllable Superhydrophobic Coating on Cotton Fabric by UV Induced Thiolâ€ene Reaction for Wettability Patterning and Device Metallization. Advanced Materials Interfaces, 2017, 4, 1700268.	3.7	27
157	An ultrahighly sensitive and repeatable flexible pressure sensor based on PVDF/PU/MWCNT hierarchical framework-structured aerogels for monitoring human activities. Journal of Materials Chemistry C, 2018, 6, 12575-12583.	5.5	27
158	Rational design of electrospun nanofibers for gas purification: Principles, opportunities, and challenges. Chemical Engineering Journal, 2022, 446, 137099.	12.7	27
159	A robust and transparent hydrogel coating for sustainable antifogging with excellent self-cleaning and self-healing ability. Chemical Engineering Journal, 2023, 451, 137879.	12.7	27
160	Tuning the surface microstructure of titanate coatings on titanium implants for enhancing bioactivity of implants. International Journal of Nanomedicine, 2015, 10, 3887.	6.7	23
161	Freestanding MoS2@carbonized cellulose aerogel derived from waste cotton for sustainable and highly efficient particulate matter capturing. Separation and Purification Technology, 2021, 254, 117571.	7.9	23
162	Nanostructured TiO2 for light-driven CO2 conversion into solar fuels. APL Materials, 2020, 8, .	5.1	22

#	Article	IF	Citations
163	A sandwich-like structured superhydrophobic fabric for versatile and highly efficient emulsion separation. Separation and Purification Technology, 2021, 275, 119253.	7.9	22
164	Rational designed microstructure pressure sensors with highly sensitive and wide detection range performance. Journal of Materials Science and Technology, 2022, 130, 184-192.	10.7	22
165	Bioinspired Mechanoâ€Sensitive Macroporous Ceramic Sponge for Logical Drug and Cell Delivery. Advanced Science, 2017, 4, 1600410.	11.2	21
166	Multifunctional TiO ₂ â€Based Particles: The Effect of Fluorination Degree and Liquid Surface Tension on Wetting Behavior. Particle and Particle Systems Characterization, 2015, 32, 355-363.	2.3	20
167	Rational Construction of LaFeO3 Perovskite Nanoparticle-Modified TiO2 Nanotube Arrays for Visible-Light Driven Photocatalytic Activity. Coatings, 2018, 8, 374.	2.6	18
168	Fabrication of TiO2/Au nanorod arrays employing a positive sacrificial ZnO template and their electrochromic property. Materials Letters, 2007, 61, 2632-2637.	2.6	17
169	Oil/molten salt interfacial synthesis of hybrid thin carbon nanostructures and their composites. Journal of Materials Chemistry A, 2018, 6, 4988-4996.	10.3	17
170	Robust amphiprotic konjac glucomannan cross-linked chitosan aerogels for efficient water remediation. Cellulose, 2019, 26, 6785-6796.	4.9	16
171	Flexible electrochromic fiber with rapid color switching and high optical modulation. Nano Research, 2023, 16, 5473-5479.	10.4	16
172	Bioinspired fabrication SERS substrate based on superwettable patterned platform for multiphase high-sensitive detecting. Composites Communications, 2018, 10, 151-156.	6.3	15
173	Exfoliation of 2D materials by saponin in water: Aerogel adsorption / photodegradation organic dye. Chemosphere, 2021, 274, 129795.	8.2	15
174	Surface plasmon resonance metal-coupled biomass carbon modified TiO2 nanorods for photoelectrochemical water splitting. Chinese Journal of Chemical Engineering, 2022, 41, 403-411.	3.5	14
175	Superwetting patterned PDMS/PMMA materials by facile one-step electro-spraying for signal expression and liquid transportation. Chemical Engineering Journal, 2022, 431, 133206.	12.7	11
176	In Operando Neutron Scattering Multipleâ€Scale Studies of Lithiumâ€Ion Batteries. Small, 2022, 18, e2107491.	10.0	11
177	Uniform spatial distribution of a nanostructured Ag/AgCl plasmonic photocatalyst and its segregative membrane towards visible light-driven photodegradation. CrystEngComm, 2016, 18, 3725-3733.	2.6	10
178	CH-Ï€ Interaction Driven Macroscopic Property Transition on Smart Polymer Surface. Scientific Reports, 2015, 5, 15742.	3.3	9
179	A polyester-silica anti-condensation surface with anti-fouling property. Chemical Engineering Journal, 2022, 440, 135934.	12.7	9
180	Hexagonal WO3Â \cdot 0.33H2O Hierarchical Microstructure with Efficient Photocatalytic Degradation Activity. Catalysts, 2021, 11, 496.	3.5	8

#	Article	IF	CITATIONS
181	An environmentally friendly fluorine-free sandwich coating based on a nonwoven fabric for efficient unidirectional water transport. Chemical Communications, 2021, 57, 12623-12626.	4.1	8
182	TiO _{2} -Based Nanomaterials: Design, Synthesis, and Applications. Journal of Nanomaterials, 2015, 2015, 1-3.	2.7	7
183	Hydrogen Production: Light-Driven Sustainable Hydrogen Production Utilizing TiO2 Nanostructures: A Review (Small Methods 1/2019). Small Methods, 2019, 3, 1800053.	8.6	7
184	Heterostructured Ternary In ₂ O ₃ â^'Agâ^'TiO ₂ Nanotube Arrays for Simulated Sunlightâ€Driven Photoelectrocatalytic Hydrogen Generation. ChemElectroChem, 2021, 8, 577-584.	3.4	7
185	Deformation and breakup of water droplets containing polymer under a <scp>DC</scp> electric field. AICHE Journal, 2022, 68, .	3.6	7
186	Controllable synthesis of carbon nanosheets derived from oxidative polymerisation of m-phenylenediamine. Journal of Colloid and Interface Science, 2019, 533, 437-444.	9.4	6
187	Water Splitting: Oneâ€dimensional TiO ₂ Nanotube Photocatalysts for Solar Water Splitting (Adv. Sci. 1/2017). Advanced Science, 2017, 4, .	11.2	5
188	Rapid and Controllable Design of Robust Superwettable Microchips by a Click Reaction for Efficient <i>>o</i> >Phthalaldehyde and Glucose Detection. ACS Biomaterials Science and Engineering, 2019, 5, 6186-6195.	5. 2	5
189	Environmental Remediation: Crafting Musselâ€Inspired Metal Nanoparticleâ€Decorated Ultrathin Graphitic Carbon Nitride for the Degradation of Chemical Pollutants and Production of Chemical Resources (Adv. Mater. 15/2019). Advanced Materials, 2019, 31, 1970110.	21.0	5
190	Coupled porosity and heterojunction engineering: MOF-derived porous Co3O4 embedded on TiO2 nanotube arrays for water remediation. Chemosphere, 2021, 274, 129799.	8.2	5
191	Recent Advances in Synthesis, Modification, and Applications of TiO2 Nanotube Arrays by Electrochemical Anodization., 2016, , 1379-1416.		4
192	Wettability: Recent Advances in TiO2-Based Nanostructured Surfaces with Controllable Wettability and Adhesion (Small 16/2016). Small, 2016, 12, 2248-2248.	10.0	3
193	A review on the recent progress in superhydrophobic surfaces with special adhesions. Scientia Sinica Chimica, 2011, 41, 609-628.	0.4	2
194	Nanotube Arrays: In Situ Surfaceâ€Modificationâ€Induced Superhydrophobic Patterns with Reversible Wettability and Adhesion (Adv. Mater. 12/2013). Advanced Materials, 2013, 25, 1804-1804.	21.0	2
195	Smart Drug Delivery Strategies Based on Porous Nanostructure Materials. , 2016, , .		2
196	Multidimensional TiO 2 nanostructured catalysts for sustainable H 2 generation. , 2018, , 237-288.		2
197	<i>In situ</i> recycling of particulate matter for a high-performance supercapacitor and oxygen evolution reaction. Materials Chemistry Frontiers, 2021, 5, 2742-2748.	5.9	1
198	Wetting Pattern on TiO2Nanostructure Films and its Application as a Template for Selective Materials Growth. Materials Research Society Symposia Proceedings, 2011, 1316, 1.	0.1	0

#	Article	IF	CITATIONS
199	Synthesis of Layered Titanate Micro/nano-materials for Efficient Pollutant Treatment in Aqueous Media. Materials Research Society Symposia Proceedings, 2011, 1309, 119.	0.1	0
200	Nanotube Arrays: Bioinspired Patterning with Extreme Wettability Contrast on TiO2Nanotube Array Surface: A Versatile Platform for Biomedical Applications (Small 17/2013). Small, 2013, 9, 3004-3004.	10.0	0
201	Recent Advances in Synthesis, Modification and Applications of TiO2 Nanotube Arrays by Electrochemical Anodization. , 2015, , 1-33.		0
202	Dynamic Wettability: Understanding the Role of Dynamic Wettability for Condensate Microdrop Selfâ€Propelling Based on Designed Superhydrophobic TiO ₂ Nanostructures (Small 4/2017). Small, 2017, 13, .	10.0	0
203	Solar-Assisted Isotropically Thermoconductive Sponge for Highly Viscous Crude Oil Spill Remediation. SSRN Electronic Journal, 0, , .	0.4	0