Olga Korotkova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9144183/publications.pdf

Version: 2024-02-01

246 papers 7,972 citations

48 h-index

44042

64755 **79** g-index

247 all docs

247 docs citations

times ranked

247

881 citing authors

#	Article	IF	CITATIONS
1	Electromagnetic Multi–Gaussian Speckle. Optics, 2022, 3, 19-34.	0.6	О
2	Orbital angular momentum transformations by non-local linear systems. Optics Letters, 2022, 47, 321.	1.7	10
3	Pseudo-modal expansions for generating random electromagnetic beams. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2022, 39, 545-551.	0.8	2
4	Stokes-Mueller correlation calculus. , 2022, , .		0
5	Integrating optical turbulence into Beer's law. Laser Physics Letters, 2022, 19, 046201.	0.6	2
6	Characterization and transformation of the OAM in stationary light beams. , 2022, , .		0
7	Coherence Poincaré sphere of partially polarized optical beams. Physical Review A, 2022, 105, .	1.0	4
8	On z-coherence of beams radiated by Schell-model sources with Gaussian profile. Optics Letters, 2022, 47, 2258.	1.7	3
9	Tailoring on-axis spectral density with circularly coherent light beams. Optics Letters, 2022, 47, 2394.	1.7	5
10	Absorption, scattering, and optical turbulence in natural waters. Applied Optics, 2022, 61, 4404.	0.9	6
11	Coherence–orbital angular momentum matrix of Schell-model sources. Optics Letters, 2022, 47, 2826.	1.7	7
12	Source coherence-induced control of spatiotemporal coherency vortices. Optics Express, 2022, 30, 19871.	1.7	6
13	Optimizing illumination's complex coherence state for overcoming Rayleigh's resolution limit. Chinese Optics Letters, 2021, 19, 052601.	1.3	15
14	Oceanic non-Kolmogorov optical turbulence and spherical wave propagation. Optics Express, 2021, 29, 1340.	1.7	7
15	Young's interference experiment for generating light with non-uniform coherence states. Optics Letters, 2021, 46, 693.	1.7	1
16	Unified matrix representation for spin and orbital angular momentum in partially coherent beams. Physical Review A, 2021, 103, .	1.0	24
17	Adaptive optics correction in natural turbulent waters. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38, 587.	0.8	6
18	Light scattering from stationary <i>PT</i> -symmetric collections of particles. Optics Letters, 2021, 46, 1417.	1.7	6

#	Article	IF	CITATIONS
19	Poincaré sphere of electromagnetic spatial coherence. Optics Letters, 2021, 46, 2143.	1.7	7
20	Evolution of Spatiotemporal Intensity of Partially Coherent Pulsed Beams with Spatial Cosine-Gaussian and Temporal Laguerre–Gaussian Correlations in Still, Pure Water. Photonics, 2021, 8, 102.	0.9	5
21	Linear Combinations of the Complex Degrees of Coherence. Photonics, 2021, 8, 146.	0.9	4
22	BER variation of an optical wireless communication system in underwater turbulent medium with any temperature and salinity concentration. Optics Communications, 2021, 485, 126751.	1.0	22
23	Self-focusing vortex beams. Optics Letters, 2021, 46, 2384.	1.7	17
24	Synthesis of vector nonuniformly correlated light beams by a single digital mirror device. Optics Letters, 2021, 46, 2996.	1.7	18
25	Electromagnetic Hanbury Brown and Twiss Effect in Atmospheric Turbulence. Photonics, 2021, 8, 186.	0.9	5
26	Jones and Stokes–Mueller analogous calculi for OAM-transforming optics. Optics Letters, 2021, 46, 2585.	1.7	12
27	Coherence theory for electromagnetic, planar, PT-symmetric light sources. Optics Letters, 2021, 46, 3576-3579.	1.7	5
28	Multi-Gaussian random variables for modeling optical phenomena. Optics Express, 2021, 29, 25771.	1.7	2
29	Three modal decompositions of Gaussian Schell-model sources: comparative analysis. Optics Express, 2021, 29, 29676.	1.7	19
30	Underwater imaging in optical turbulence: average temperature and salinity effects. Applied Optics, 2021, 60, 8969.	0.9	6
31	Electromagnetic coherence gratings for atmospheric applications. Optics Letters, 2021, 46, 5240-5243.	1.7	3
32	Non-Classic Atmospheric Optical Turbulence: Review. Applied Sciences (Switzerland), 2021, 11, 8487.	1.3	13
33	Wave and phase structure functions of plane and spherical waves in particle-free natural turbulent waters. Optics Communications, 2021, 497, 127169.	1.0	9
34	Introduction to the Special Issue on Structured Light Coherence. Photonics, 2021, 8, 457.	0.9	2
35	Robust far-field imaging by spatial coherence engineering. Opto-Electronic Advances, 2021, .	6.4	3
36	The Coherence-Orbital Angular Momentum Representation of Partially Coherent Beams. , 2021, , .		0

#	Article	IF	CITATIONS
37	Robust far-field imaging by spatial coherence engineering. Opto-Electronic Advances, 2021, 4, 210027-210027.	6.4	57
38	Light scintillation in soft biological tissues. Waves in Random and Complex Media, 2020, 30, 481-489.	1.6	14
39	Direct and inverse problems of weak scattering from quasi-homogeneous biological tissue. Waves in Random and Complex Media, 2020, 30, 241-249.	1.6	8
40	Bi-static LIDAR systems operating in the presence of oceanic turbulence. Optics Communications, 2020, 460, 125119.	1.0	15
41	Experimental synthesis of random light sources with circular coherence by digital micro-mirror device. Applied Physics Letters, 2020, 117, .	1.5	24
42	Correlation-induced orbital angular momentum changes. Physical Review A, 2020, 102, .	1.0	18
43	Applications of optical coherence theory. Progress in Optics, 2020, , 43-104.	0.4	41
44	Non-stationary pulses with complex-valued temporal degree of coherence. Journal of Optics (United) Tj ETQq0	0 0 rgBT /C	overlock 10 Tf
45	Spatial power spectrum of natural water turbulence with any average temperature, salinity concentration, and light wavelength. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 1614.	0.8	35
46	Propagation of Gaussian Schell-model beams through a jet engine exhaust. Optics Express, 2020, 28, 1037.	1.7	15
47	Random source for generating Airy-like spectral density in the far field. Optics Express, 2020, 28, 7182.	1.7	12
48	Cross-spectral densities with helical-Cartesian phases. Optics Express, 2020, 28, 20438.	1.7	5
49	Asymmetric coherence gratings. Optics Letters, 2020, 45, 1366.	1.7	12
50	Effects of source spatial partial coherence on intensity statistics of optical beams in mono-static turbulent channels. Optics Express, 2020, 28, 20135.	1.7	2
51	Mitigation of atmospheric turbulence with random light carrying OAM. Optics Communications, 2019, 446, 178-185.	1.0	33
52	Multi-Gaussian Schell-model source with a complex coherence state. Journal of Optics (United) Tj ETQq0 0 0 rg	BT /Qverlo	ck 10 Tf 50 14
53	Light Propagation in a Turbulent Ocean. Progress in Optics, 2019, 64, 1-43.	0.4	36
54	Polarization signature of a monostatic double-pass system with a corner-cube reflector in the turbulent air. Applied Optics, 2019, 58, 7139.	0.9	5

#	Article	IF	Citations
55	Wide-range Prandtl/Schmidt number power spectrum of optical turbulence and its application to oceanic light propagation. Optics Express, 2019, 27, 27807.	1.7	26
56	Phase structuring of 2D complex coherence states. Optics Letters, 2019, 44, 2470.	1.7	31
57	Electromagnetic Schell-model beams with arbitrary complex correlation states. Optics Letters, 2019, 44, 4945.	1.7	17
58	Propagation of IO-Bessel correlated beams carrying orbital angular momentum in weak atmospheric turbulence., 2019,,.		0
59	LIDAR systems operating in the presence of oceanic turbulence. , 2019, , .		2
60	Phase structuring of the complex degree of coherence. Optics Letters, 2018, 43, 4727.	1.7	41
61	Synthesis of Im-Bessel correlated beams via coherent modes. Optics Letters, 2018, 43, 3590.	1.7	44
62	Monte Carlo simulations of three-dimensional electromagnetic Gaussian Schell-model sources. Optics Express, 2018, 26, 2303.	1.7	2
63	Enhanced Back-Scatter in double-pass optical links with non-classic turbulence. Optics Express, 2018, 26, 10128.	1.7	12
64	Twisted EM beams with structured correlations. Optics Letters, 2018, 43, 3905.	1.7	24
65	Sources for random arrays with structured complex degree of coherence. Optics Letters, 2018, 43, 2676.	1.7	19
66	Design of 3D Stochastic Electromagnetic Sources. , 2018, , .		0
67	Enhanced backscatter in LIDAR systems with retro-reflectors operating through a turbulent ocean. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 1797.	0.8	15
68	Complex degree of coherence modeling with famous planar curves. Optics Letters, 2018, 43, 6049.	1.7	19
69	Optical beam propagation in soft anisotropic biological tissues. OSA Continuum, 2018, 1, 1055.	1.8	13
70	Probability density functions of instantaneous Stokes parameters on weak scattering. Optics Communications, 2017, 400, 1-8.	1.0	6
71	Finding anisotropic ellipse of turbulence fluctuations from beam intensity correlations. , 2017, , .		1
72	Random medium model for cusping of plane waves. Optics Letters, 2017, 42, 3251.	1.7	10

#	Article	IF	Citations
73	Circularly symmetric cusped random beams in free space and atmospheric turbulence. Optics Express, 2017, 25, 5057.	1.7	25
74	Deterministic mode representation of random stationary media for scattering problems. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 1021.	0.8	4
75	Three-dimensional electromagnetic Gaussian Schell-model sources. Optics Letters, 2017, 42, 1792.	1.7	9
76	Random sources for rotating spectral densities. Optics Letters, 2017, 42, 255.	1.7	81
77	Measuring anisotropy ellipse of atmospheric turbulence by intensity correlations of laser light. Optics Letters, 2017, 42, 1129.	1.7	40
78	Random optical beam propagation in anisotropic turbulence along horizontal links. Optics Express, 2016, 24, 24422.	1.7	29
79	Random sources for beams with azimuthally varying polarization properties. Optics Express, 2016, 24, 15446.	1.7	8
80	Convolution approach for beam propagation in random media. Optics Letters, 2016, 41, 1546.	1.7	22
81	Scattering of light from a stationary nonuniformly correlated medium. Optics Letters, 2016, 41, 2616.	1.7	27
82	Gaussian beam propagation in anisotropic turbulence along horizontal links: theory, simulation, and laboratory implementation. Applied Optics, 2016, 55, 4079.	2.1	40
83	Controlled simulation of optical turbulence in a temperature gradient air chamber. Proceedings of SPIE, 2016, , .	0.8	4
84	Double-passage propagation of laser beams in non-Kolmogorov turbulence. , 2016, , .		0
85	Random sources for cusped beams. Optics Express, 2016, 24, 17779.	1.7	30
86	Electromagnetic Schell-model sources generating far fields with stable and flexible concentric rings profiles. Optics Express, 2016, 24, 5572.	1.7	15
87	Propagation of polarized waves in inhomogeneous media: comment. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, 1395.	0.8	0
88	Random sources for beams with azimuthal intensity variation. Optics Letters, 2016, 41, 516.	1.7	38
89	Two spatial light modulator system for laboratory simulation of random beam propagation in random media. Applied Optics, 2016, 55, 1112.	2.1	17
90	Scintillation of a retro-reflected Gaussian beam from a point target in deep non-Kolmogorov turbulence. , 2016 , , .		0

#	Article	IF	Citations
91	Optical turbulence with anisotropy at different scales and its effect on laser beam propagation along vertical paths. Proceedings of SPIE, $2015, \ldots$	0.8	15
92	Powers of the degree of coherence. Optics Express, 2015, 23, 8519.	1.7	13
93	Gaussian Schell-model arrays. Optics Letters, 2015, 40, 5662.	1.7	65
94	Random electromagnetic model beams with correlations described by two families of functions. Optics Letters, 2015, 40, 5534.	1.7	6
95	Numerical modeling of Schell-model beams with arbitrary far-field patterns. Optics Letters, 2015, 40, 352.	1.7	61
96	Design of weak scattering media for controllable light scattering. Optics Letters, 2015, 40, 284.	1.7	32
97	Can a sphere scatter light producing rectangular intensity patterns?. Optics Letters, 2015, 40, 1709.	1.7	23
98	SLM-based laboratory simulations of Kolmogorov and non-Kolmogorov anisotropic turbulence. Applied Optics, 2015, 54, 4740.	0.9	45
99	Spread and wander of a laser beam propagating through anisotropic turbulence. Proceedings of SPIE, 2015, , .	0.8	7
100	Source coherence-based far-field intensity filtering. Optics Express, 2015, 23, 24748.	1.7	5
101	General scale-dependent anisotropic turbulence and its impact on free space optical communication system performance. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2015, 32, 1017.	0.8	45
102	Convolution of degrees of coherence. Optics Letters, 2015, 40, 3073.	1.7	19
103	Polarization changes in light beams trespassing anisotropic turbulence. Optics Letters, 2015, 40, 3077.	1.7	31
104	Modeling the Electromagnetic Gaussian Schell-Model Source. , 2015, , .		1
105	Alternating series of cross-spectral densities. Optics Letters, 2015, 40, 2473.	1.7	25
106	Sinc Schell-model pulses. Optics Communications, 2015, 339, 115-122.	1.0	10
107	Laboratory Investigation of the Spectral Exponent Effect on Scintillation in Non-Kolmogorov Turbulence. , 2014, , .		3
108	Products of Schell-model cross-spectral densities. Optics Letters, 2014, 39, 6879.	1.7	21

#	Article	IF	CITATIONS
109	Light scattering by three-dimensional objects with semi-hard boundaries. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, 1782.	0.8	21
110	Computational approaches for generating electromagnetic Gaussian Schell-model sources. Optics Express, 2014, 22, 31691.	1.7	46
111	Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. Optics Letters, 2014, 39, 769.	1.7	134
112	Cosine-Gaussian correlated Schell-model pulsed beams. Optics Express, 2014, 22, 931.	1.7	41
113	Laboratory implementation of partially coherent beams with super-Gaussian distribution., 2014,,.		5
114	Multiple phase-screen simulation of oceanic beam propagation. , 2014, , .		10
115	Propagation of electromagnetic stochastic beams in anisotropic turbulence. Optics Express, 2014, 22, 31608.	1.7	70
116	The control of pulse profiles with tunable temporal coherence. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1687-1690.	0.9	21
117	Polarization of random beams scattered from two-dimensional bio-tissue slices. Optics Communications, 2014, 322, 202-204.	1.0	8
118	Generation and propagation of a partially coherent vector beam with special correlation functions. Physical Review A, 2014, 89, .	1.0	117
119	Random sources for optical frames. Optics Express, 2014, 22, 10622.	1.7	35
120	Position modulation with random pulses. Optics Express, 2014, 22, 16197.	1.7	8
121	Random sources for rectangular far fields. Optics Letters, 2014, 39, 64.	1.7	114
122	Rectangular Multi-Gaussian Schell-Model beams in atmospheric turbulence. Journal of Optics (United) Tj ETQq0 0))verlock 10 Tf 42
123	Random optical frames in atmospheric turbulence. Journal of Optics (United Kingdom), 2014, 16, 105713.	1.0	3
124	Gradient-index waveguide lens systems for polarization modulation of random electromagnetic beams. Applied Physics B: Lasers and Optics, 2013, 110, 491-496.	1.1	0
125	Electromagnetic multi-Gaussian Schell-model beams. Journal of Optics (United Kingdom), 2013, 15, 025705.	1.0	71
126	Random sources generating ring-shaped beams. Optics Letters, 2013, 38, 91.	1.7	215

#	Article	IF	CITATIONS
127	Cosine-Gaussian Schell-model sources. Optics Letters, 2013, 38, 2578.	1.7	153
128	Probability density functions of power-in-bucket and power-in-fiber for an infrared laser beam propagating in the maritime environment. Applied Optics, 2013, 52, 7449.	0.9	2
129	Spectral Gaussian Schell-model beams. Optics Letters, 2013, 38, 2233.	1.7	8
130	Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence. Optics Express, 2013, 21, 27246.	1.7	40
131	Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence. Optics Express, 2013, 21, 17512.	1.7	61
132	Tuning the spectral composition of random beams propagating in free space and in a turbulent atmosphere. Journal of Optics (United Kingdom), 2013, 15, 075714.	1.0	6
133	Manipulation of Spectral Composition of a Random Beam in Turbulent Atmosphere. , 2013, , .		0
134	Canard explosion in chemical and optical systems. Discrete and Continuous Dynamical Systems - Series B, 2013, 18, 495-512.	0.5	26
135	Electromagnetic nonuniformly correlated beams. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 2154.	0.8	84
136	Probability density function of partially coherent beams propagating in the atmospheric turbulence. Proceedings of SPIE, 2012 , , .	0.8	8
137	Electromagnetic non-uniformly correlated beams in turbulent atmosphere. Optics Express, 2012, 20, 26458.	1.7	36
138	Random light scattering by collections of ellipsoids. Optics Express, 2012, 20, 29296.	1.7	31
139	Beyond the classical Rayleigh limit with twisted light. Optics Letters, 2012, 37, 2595.	1.7	62
140	Multi-Gaussian Schell-model beams. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, 2159.	0.8	195
141	Light sources generating far fields with tunable flat profiles. Optics Letters, 2012, 37, 2970.	1.7	248
142	Contribution of evanescent incident waves to the scattered far field. Physical Review A, 2012, 85, .	1.0	6
143	Electromagnetic scattering from biological tissue. Proceedings of SPIE, 2012, , .	0.8	0
144	Experimental demonstration of coupling of an electromagnetic Gaussian Schell-model beam into a single-mode optical fiber. Applied Physics B: Lasers and Optics, 2012, 108, 891-895.	1.1	10

#	Article	lF	CITATIONS
145	Nonuniformly correlated light beams in uniformly correlated media. Optics Letters, 2012, 37, 3240.	1.7	97
146	Experimental generation of a radially polarized beam with controllable spatial coherence. Applied Physics Letters, 2012, 100, .	1.5	88
147	Intensity–intensity fluctuations of stochastic fields produced upon weak scattering. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 1139.	0.8	22
148	Method for tracing the position of an alien object embedded in a random particulate medium. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2011, 28, 1595.	0.8	5
149	Condition for canard explosion in a semiconductor optical amplifier. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1988.	0.9	24
150	Probability density function of the intensity of a laser beam propagating in the maritime environment. Optics Express, 2011, 19, 20322.	1.7	27
151	Scattering-induced changes in the temporal coherence length and the pulse duration of a partially coherent plane-wave pulse. Optics Letters, 2011, 36, 517.	1.7	48
152	Crystalline human eye lens' response to stochastic light. Optics Letters, 2011, 36, 2970.	1.7	2
153	Technique for interaction of optical fields with turbulent medium containing particles. Optics Letters, 2011, 36, 3157.	1.7	6
154	Scattering of light from particles with semisoft boundaries. Optics Letters, 2011, 36, 3957.	1.7	41
155	Far-field scattering of random electromagnetic fields from particulate media. Proceedings of SPIE, 2011, , .	0.8	0
156	Pair-structure matrix of random collection of particles: Implications for light scattering. Optics Communications, 2011, 284, 5598-5600.	1.0	8
157	Degree of paraxiality of a stochastic electromagnetic Gaussian Schell-model beam. Optics Communications, 2011, 284, 1111-1117.	1.0	21
158	Effect of oceanic turbulence on polarization of stochastic beams. Optics Communications, 2011, 284, 1740-1746.	1.0	114
159	Momentum of light scattered from collections of particles. Physical Review A, 2011, 84, .	1.0	6
160	Hybrid technique for propagation and scattering from random medium containing random distribution of particles. , $2011, , .$		0
161	Probability density function of fluctuating intensity of a laser beam propagating in marine atmospheric turbulence. , $2011, \ldots$		2
162	Intensity fluctuations of partially coherent cos Gaussian and cosh Gaussian beams in atmospheric turbulence. Journal of Optics (United Kingdom), 2011, 13, 055709.	1.0	7

#	Article	ΙF	Citations
163	Light Scattering from Deterministic and Random Media with Semi-Soft Boundaries., 2011,,.		О
164	Stochastic electromagnetic beams for sensing and free-space communications., 2011,,.		0
165	Momentum of Light Scattered from Collections of Particles. , 2011, , .		0
166	Theory of weak scattering of stochastic electromagnetic fields from deterministic and random media. Physical Review A, 2010, 82, .	1.0	70
167	Spectral shift of a stochastic electromagnetic Gaussian Schell-model beam in a Gaussian cavity. Optics Communications, 2010, 283, 4505-4511.	1.0	6
168	Spectral and polarization properties of stochastic electromagnetic beams propagating in gain or absorbing media. Optics Communications, 2010, 283, 1693-1706.	1.0	5
169	Sensing of semi-rough targets embedded in atmospheric turbulence by means of stochastic electromagnetic beams. Optics Communications, 2010, 283, 4512-4518.	1.0	28
170	Ghost imaging with electromagnetic stochastic beams. Optics Communications, 2010, 283, 3838-3845.	1.0	47
171	Far-field analysis of spectral shifts in Gaussian Schell-model beams propagating through media with arbitrary refractive properties. Journal of Optics (United Kingdom), 2010, 12, 095708.	1.0	0
172	Polarization changes in stochastic electromagnetic beams propagating in the oceanic turbulence. , 2010, , .		9
173	Spectral shifts and switches in random fields upon interaction with negative-phase materials. Physical Review A, 2010, 82, .	1.0	10
174	Beam wander characteristics of flat-topped, dark hollow, cos and cosh-Gaussian, J 0 - and I 0 - Bessel Gaussian beams propagating in turbulent atmosphere: a review. Proceedings of SPIE, 2010, , .	0.8	2
175	Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence. Optics Express, 2010, 18, 10650.	1.7	111
176	Focusing of a femtosecond vortex light pulse through a high numerical aperture objective. Optics Express, 2010, 18, 10822.	1.7	23
177	Propagation factor of a stochastic electromagnetic Gaussian Schell-model beam. Optics Express, 2010, 18, 12587.	1.7	74
178	Spatio-temporal coupling of random electromagnetic pulses interacting with reflecting gratings. Optics Express, 2010, 18, 22503.	1.7	19
179	Stochastic electromagnetic beams in positive- and negative-phase materials. Optics Letters, 2010, 35, 175.	1.7	12
180	Color changes in stochastic light fields propagating in non-Kolmogorov turbulence. Optics Letters, 2010, 35, 3772.	1.7	49

#	Article	IF	CITATIONS
181	Degree of paraxiality of a partially coherent field. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 1120.	0.8	17
182	Far-field analysis of spectral shifts in stochastic beams propagating through media with arbitrary refractive properties. , 2010 , , .		0
183	The effect of the jet-stream on the intensity of laser beams propagating along slanted paths in the upper layers of the turbulent atmosphere. Waves in Random and Complex Media, 2009, 19, 692-702.	1.6	5
184	Free-space propagation of the spectral degree of cross-polarization of stochastic electromagnetic beams. Journal of Optics, 2009, 11, 085703.	1.5	15
185	Speckle-field simulator characterization. , 2009, , .		1
186	Experimental observation of focal shifts in focused partially coherent beams. Optics Communications, 2009, 282, 3408-3413.	1.0	19
187	Propagation of the degree of cross-polarization of a stochastic electromagnetic beam through the turbulent atmosphere. Optics Communications, 2009, 282, 1691-1698.	1.0	40
188	Modal expansion for spherical homogeneous sources. Optics Communications, 2009, 282, 3859-3861.	1.0	12
189	Effect of the pair-structure factor of a particulate medium on scalar wave scattering in the first Born approximation. Optics Letters, 2009, 34, 1762.	1.7	48
190	Scintillation of nonuniformly polarized beams in atmospheric turbulence. Optics Letters, 2009, 34, 2261.	1.7	120
191	Scintillation index of modified Bessel-Gaussian beams propagating in turbulent media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 387.	0.8	50
192	Ghost imaging with twisted Gaussian Schell-model beam. Optics Express, 2009, 17, 2453.	1.7	47
193	M^2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere. Optics Express, 2009, 17, 17344.	1.7	135
194	Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams. Optics Express, 2009, 17, 21472.	1.7	94
195	Partially coherent standard and elegant Laguerre-Gaussian beams of all orders. Optics Express, 2009, 17, 22366.	1.7	103
196	Fluctuations in the instantaneous Stokes parameters of stochastic electromagnetic beams propagating in the turbulent atmosphere. , 2009, , .		3
197	Scintillation of nonuniformly polarized beams in atmospheric turbulence. , 2009, , .		0
198	Modulation of coherence and polarization properties of beams for communication and LIDAR systems operating in atmospheric turbulence., 2009,,.		0

#	Article	IF	Citations
199	Cross-spectral density matrix of a random electromagnetic beam propagating through an apertured axially nonsymmetrical optical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 4135-4140.	0.9	4
200	Beam criteria for propagation of electromagnetic beams in the turbulent atmosphere. Optics Communications, 2008, 281, 948-952.	1.0	2
201	Polarization and coherence properties of a beam formed by superposition of a pair of stochastic electromagnetic beams. Optics Communications, 2008, 281, 5073-5077.	1.0	8
202	Scintillation index of a stochastic electromagnetic beam propagating in random media. Optics Communications, 2008, 281, 2342-2348.	1.0	134
203	Evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity. Optics Letters, 2008, 33, 2266.	1.7	59
204	State of polarization of a stochastic electromagnetic beam in an optical resonator. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 2710.	0.8	21
205	Active laser radar systems with stochastic electromagnetic beams in turbulent atmosphere. Optics Express, 2008, 16, 15834.	1.7	100
206	Conservation laws for stochastic electromagnetic free fields. Journal of Optics, 2008, 10, 025003.	1.5	7
207	The effect of the jet-stream on the intensity of laser beams propagating along slanted paths in the upper layers of the turbulent atmosphere. , 2008, , .		1
208	Spectral changes in electromagnetic stochastic beams propagating through turbulent atmosphere. Journal of Modern Optics, 2008, 55, 1199-1208.	0.6	25
209	Scattering of scalar light fields from collections of particles. Physical Review A, 2008, 78, .	1.0	60
210	Propagation of beams with any spectral, coherence, and polarization properties in turbulent atmosphere. , 2007, , .		11
211	Scattering matrix theory for stochastic scalar fields. Physical Review E, 2007, 75, 056609.	0.8	49
212	Definitions of the degree of polarization of a light beam. Optics Letters, 2007, 32, 1015.	1.7	55
213	Beam criterion for atmospheric propagation. Optics Letters, 2007, 32, 2137.	1.7	29
214	Application of correlation-induced spectral changes to inverse scattering. Optics Letters, 2007, 32, 3483.	1.7	92
215	Angular spectrum representation for the propagation of arbitrary coherent and partially coherent beams through atmospheric turbulence. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 745.	0.8	40
216	Angular spectrum representation for propagation of random electromagnetic beams in a turbulent atmosphere. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 2728.	0.8	21

#	Article	IF	Citations
217	Changes in the statistical properties of stochastic anisotropic electromagnetic beams on propagation in the turbulent atmosphere. Optics Express, 2007, 15, 16909.	1.7	111
218	Polarization-induced spectral changes on propagation of stochastic electromagnetic beams. Physical Review E, 2007, 75, 056610.	0.8	31
219	Changes in the state of polarization of a random electromagnetic beam propagating through tissue. Optics Communications, 2007, 270, 474-478.	1.0	72
220	Propagation of the electric correlation matrix and the van Cittert–Zernike theorem for random electromagnetic fields. Journal of Modern Optics, 2006, 53, 969-978.	0.6	27
221	Invariance and noninvariance of the spectra of stochastic electromagnetic beams on propogation. Optics Letters, 2006, 31, 2097.	1.7	58
222	Can two planar sources with the same sets of Stokes parameters generate beams with different degrees of polarization?. Optics Letters, 2006, 31, 3025.	1.7	16
223	Invariance and non-invariance of the spectra of stochastic electromagnetic beams on propagation. , 2006, , .		0
224	Dependence of the Degree of Polarization on the Degree of Coherence in Stochastic Electromagnetic Beams. , 2006, , .		0
225	Changes in the state of polarization of a random electromagnetic beam on propagation. Optics Communications, 2005, 246, 35-43.	1.0	234
226	Realizability conditions for electromagnetic Gaussian Schell-model sources. Optics Communications, 2005, 249, 379-385.	1.0	135
227	Effects of linear non-image-forming devices on spectra and on coherence and polarization properties of stochastic electromagnetic beams: part II: examples. Journal of Modern Optics, 2005, 52, 2673-2685.	0.6	13
228	Effects of linear non-image-forming devices on spectra and on coherence and polarization properties of stochastic electromagnetic beams: part I: general theory. Journal of Modern Optics, 2005, 52, 2659-2671.	0.6	26
229	A method of generating electromagnetic Gaussian Schell-model beams. Journal of Optics, 2005, 7, 232-237.	1.5	121
230	Coherence and polarization properties of far fields generated by quasi-homogeneous planar electromagnetic sources. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2005, 22, 2547.	0.8	51
231	Generalized Stokes parameters of random electromagnetic beams. Optics Letters, 2005, 30, 198.	1.7	222
232	Realizability conditions and synthesis of electromagnetic Gaussian Schell-model sources., 2005,,.		0
233	Generalized Jones-Mueller polarization calculus. , 2005, , .		0
234	Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom. Optical Engineering, 2004, 43, 330.	0.5	214

#	Article	IF	CITATIONS
235	Lidar model for a rough-surface target: method of partial coherence. , 2004, , .		7
236	The far-zone behavior of the degree of polarization of electromagnetic beams propagating through atmospheric turbulence. Optics Communications, 2004, 233, 225-230.	1.0	198
237	Polarization changes in partially coherent electromagnetic beams propagating through turbulent atmosphere. Waves in Random and Complex Media, 2004, 14, 513-523.	1.5	133
238	Spectral degree of coherence of a random three-dimensional electromagnetic field. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2004, 21, 2382.	0.8	50
239	Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source. Optics Letters, 2004, 29, 1173.	1.7	122
240	The effect of partially coherent quasi-monochromatic Gaussian beam on the probability of fade. , 2004, , .		9
241	Electromagnetic beam propagation through the atmosphere: effects of source coherence and turbulence on the degree of polarization. , 2004, , .		O
242	Laser radar in turbulent atmosphere: effect of target with arbitrary roughness on second- and fourth-order statistics of Gaussian beam. , 2003, , .		6
243	Phase diffuser at the transmitter for lasercom link: effect of partially coherent beam on the bit-error rate., 2003, 4976, 70.		10
244	Speckle propagation through atmospheric turbulence: effects of a random phase screen at the source. , 2002, , .		20
245	Speckle propagation through atmospheric turbulence: effects of partial coherence of the target., 2002, 4723, 73.		13
246	2021 JOSA A Emerging Researcher Best Paper Prize: editorial. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 0, , .	0.8	1