John F Zimmerman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9144043/publications.pdf

Version: 2024-02-01

24 papers 1,239 citations

16 h-index 610901 24 g-index

27 all docs

27 docs citations

times ranked

27

2025 citing authors

#	Article	IF	CITATIONS
1	An autonomously swimming biohybrid fish designed with human cardiac biophysics. Science, 2022, 375, 639-647.	12.6	95
2	Addendum: A tissue-engineered scale model of the heart ventricle. Nature Biomedical Engineering, 2022, 6, 1318-1318.	22.5	2
3	Differential modulation of endothelial cytoplasmic protrusions after exposure to graphene-family nanomaterials. NanoImpact, 2022, 26, 100401.	4.5	3
4	High-throughput coating with biodegradable antimicrobial pullulan fibres extends shelf life and reduces weight loss in an avocado model. Nature Food, 2022, 3, 428-436.	14.0	38
5	Recreating the heart's helical structure-function relationship with focused rotary jet spinning. Science, 2022, 377, 180-185.	12.6	47
6	Inhibition of mTOR Signaling Enhances Maturation of Cardiomyocytes Derived From Human-Induced Pluripotent Stem Cells via p53-Induced Quiescence. Circulation, 2020, 141, 285-300.	1.6	72
7	Human brain microvascular endothelial cell pairs model tissue-level blood–brain barrier function. Integrative Biology (United Kingdom), 2020, 12, 64-79.	1.3	8
8	para-Aramid Fiber Sheets for Simultaneous Mechanical and Thermal Protection in Extreme Environments. Matter, 2020, 3, 742-758.	10.0	43
9	Mapping 2D- and 3D-distributions of metal/metal oxide nanoparticles within cleared human ex vivo skin tissues. NanoImpact, 2020, 17, 100208.	4.5	11
10	Multifunctional optofluidic brain probes. Nature Biomedical Engineering, 2019, 3, 596-597.	22.5	3
11	Muscle tissue engineering in fibrous gelatin: implications for meat analogs. Npj Science of Food, 2019, 3, 20.	5 . 5	115
12	Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a Chip designed for scalable manufacturing. Lab on A Chip, 2019, 19, 2993-3010.	6.0	74
13	Quantifying the effects of engineered nanomaterials on endothelial cell architecture and vascular barrier integrity using a cell pair model. Nanoscale, 2019, 11, 17878-17893.	5.6	14
14	Scatter Enhanced Phase Contrast Microscopy for Discriminating Mechanisms of Active Nanoparticle Transport in Living Cells. Nano Letters, 2019, 19, 793-804.	9.1	17
15	Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires. Nature Nanotechnology, 2018, 13, 260-266.	31.5	185
16	Nongenetic Optical Methods for Measuring and Modulating Neuronal Response. ACS Nano, 2018, 12, 4086-4095.	14.6	35
17	A tissue-engineered scale model of the heart ventricle. Nature Biomedical Engineering, 2018, 2, 930-941.	22.5	162
18	Mussel-inspired 3D fiber scaffolds for heart-on-a-chip toxicity studies of engineered nanomaterials. Analytical and Bioanalytical Chemistry, 2018, 410, 6141-6154.	3.7	66

#	Article	IF	CITATIONS
19	Cellular uptake and dynamics of unlabeled freestanding silicon nanowires. Science Advances, 2016, 2, e1601039.	10.3	84
20	Optical Determination of Silicon Nanowire Diameters for Intracellular Applications. Journal of Physical Chemistry C, 2015, 119, 29105-29115.	3.1	8
21	Atomic gold–enabled three-dimensional lithography for silicon mesostructures. Science, 2015, 348, 1451-1455.	12.6	82
22	Free-Standing Kinked Silicon Nanowires for Probing Inter- and Intracellular Force Dynamics. Nano Letters, 2015, 15, 5492-5498.	9.1	43
23	Nanowire Biosensors. RSC Smart Materials, 2014, , 167-199.	0.1	0
24	Nanoscale semiconductor devices as new biomaterials. Biomaterials Science, 2014, 2, 619-626.	5.4	25