Xin Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9143807/xin-wang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

350	22,536 citations	79	139
papers		h-index	g-index
351	24,512	6.2 avg, IF	7.33
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
350	Covalently Induced Grafting of C2N Nanoflakes onto Reduced Graphene Oxide with Dominant Pseudocapacitive Behaviors for a High-Rate Sodium-Ion Battery Anode. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 15946-15956	8.3	O
349	Recent advances in the heteroatom doping of perovskite oxides for efficient electrocatalytic reactions. <i>Nanoscale</i> , 2021 ,	7.7	5
348	Recent development and applications of electrical conductive MOFs. <i>Nanoscale</i> , 2021 , 13, 485-509	7.7	24
347	Design and Construction of Graphitic/Amorphous Heterophase Porous Carbon with a Lotus-Leaf-like Surface Microstructure for High-Performance Li-Ion and Na-Ion Batteries. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 11475-11484	3.9	10
346	Supramolecular preorganization effect to access single cobalt sites for enhanced photocatalytic hydrogen evolution and nitrogen fixation. <i>Chemical Engineering Journal</i> , 2020 , 394, 124822	14.7	9
345	General synthesis strategy for hollow porous prismatic graphitic carbon nitride: a high-performance photocatalyst for H2 production and degradation of RhB. <i>Journal of Materials Science</i> , 2020 , 55, 6037-6	10 1 छे	8
344	Hollow porous prismatic graphitic carbon nitride with nitrogen vacancies and oxygen doping: a high-performance visible light-driven catalyst for nitrogen fixation. <i>Nanoscale</i> , 2020 , 12, 1833-1841	7.7	33
343	Ultrathin two-dimensional d conjugated coordination polymer Co3(hexaaminobenzene)2 nanosheets for highly efficient oxygen evolution. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 369-379	13	27
342	Pressure difference-induced synthesis of P-doped carbon nanobowls for high-performance supercapacitors. <i>Chemical Engineering Journal</i> , 2020 , 385, 123858	14.7	39
341	Phosphorous/oxygen co-doped mesoporous carbon bowls as sulfur host for high performance lithium-sulfur batteries. <i>Journal of Power Sources</i> , 2020 , 450, 227658	8.9	16
340	Two-dimensional organicIhorganic superlattice-like heterostructures for energy storage applications. <i>Energy and Environmental Science</i> , 2020 , 13, 4834-4853	35.4	17
339	Two-Dimensional Nanomesh Arrays as Bifunctional Catalysts for N2 Electrolysis. <i>ACS Catalysis</i> , 2020 , 10, 11371-11379	13.1	23
338	Hierarchically Structured Two-Dimensional Bimetallic CoNi-Hexaaminobenzene Coordination Polymers Derived from Co(OH) for Enhanced Oxygen Evolution Catalysis. <i>Small</i> , 2020 , 16, e1907043	11	20
337	Sandwich-like reduced graphene oxide/yolk-shell-structured Fe@FeO/carbonized paper as an efficient freestanding electrode for electrochemical synthesis of ammonia directly from HO and nitrogen. <i>Nanoscale</i> , 2019 , 11, 12997-13006	7.7	18
336	Nickel phosphide decorated with trace amount of platinum as an efficient electrocatalyst for the alkaline hydrogen evolution reaction. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 2006-2014	5.8	11
335	Labyrinth-inspired nitrogen-sulfur co-doped reduced holey graphene oxide/carbonized cellulose paper: A permselective and multifunctional interlayer for high-performance lithium-sulfur batteries. <i>Journal of Power Sources</i> , 2019 , 434, 226728	8.9	29
334	One-pot fabrication of a double Z-scheme CeCO3OH/g-C3N4/CeO2 photocatalyst for nitrogen fixation under solar irradiation. <i>Catalysis Science and Technology</i> , 2019 , 9, 2849-2857	5.5	20

333	Heterojunctions Derived by Integrating Arylene-Ethynylene Nanobelts and N-Doped Graphene for Molecular Sensing. <i>ACS Applied Nano Materials</i> , 2019 , 2, 2336-2346	5.6	2
332	Catalytic hydrogenation of p-nitrophenol using a metal-free catalyst of porous crimped graphitic carbon nitride. <i>Applied Surface Science</i> , 2019 , 480, 888-895	6.7	24
331	Preparation of tellurium doped graphitic carbon nitride and its visible-light photocatalytic performance on nitrogen fixation. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 563, 263-270	5.1	26
330	A general approach for fabricating 3D MFe2O4 (M=Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes for lithium-ion batteries. <i>Nano Energy</i> , 2019 , 57, 48-56	17.1	59
329	An in situ annealing route to [Bi6O6(OH)2](NO3)4DH2O/g-C3N4 heterojunction and its visible-light-driven photocatalytic performance. <i>Materials Research Bulletin</i> , 2018 , 101, 272-279	5.1	13
328	Strongly anisotropic thermal conductivity and adequate breathability of bilayered films for heat management of on-skin electronics. <i>2D Materials</i> , 2018 , 5, 035013	5.9	9
327	Co3O4 nanocrystals with exposed low-surface-energy planes anchored on chemically integrated graphitic carbon nitride-modified nitrogen-doped graphene: A high-performance anode material for lithium-ion batteries. <i>Applied Surface Science</i> , 2018 , 439, 447-455	6.7	11
326	Cost-effective nitrogen-doped carbon black supported PdCu alloy nanocatalyst for green Suzuki-Miyaura reactions under mild conditions. <i>Materials Chemistry and Physics</i> , 2018 , 209, 86-94	4.4	13
325	Green synthesis of I Ilons doped (BiO) 2 CO 3 with enhanced visible-light photocatalytic activity. <i>Materials Letters</i> , 2018 , 214, 103-106	3.3	7
324	YolkEhell-structured MnO2 microspheres with oxygen vacancies for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 1601-1611	13	92
323	Ultrathin molybdenum disulfide/carbon nitride nanosheets with abundant active sites for enhanced hydrogen evolution. <i>Nanoscale</i> , 2018 , 10, 1766-1773	7.7	46
322	Surface pore-containing NiCo2O4 nanobelts with preferred (311) plane supported on reduced graphene oxide: A high-performance anode material for lithium-ion batteries. <i>Electrochimica Acta</i> , 2018 , 271, 137-145	6.7	27
321	Nitrogen photofixation by ultrathin amine-functionalized graphitic carbon nitride nanosheets as a gaseous product from thermal polymerization of urea. <i>Applied Catalysis B: Environmental</i> , 2018 , 224, 222-229	21.8	89
320	Enhanced visible-light photocatalytic nitrogen fixation over semicrystalline graphitic carbon nitride: Oxygen and sulfur co-doping for crystal and electronic structure modulation. <i>Journal of Colloid and Interface Science</i> , 2018 , 509, 298-306	9.3	47
319	Covalent Functionalization of Carbon Nitride Frameworks through Cross-Coupling Reactions. <i>Chemistry - A European Journal</i> , 2018 , 24, 14921-14927	4.8	33
318	Sulfur-doped g-C3N4 nanosheets with carbon vacancies: General synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation. <i>Chemical Engineering Journal</i> , 2018 , 353, 147-	1567	179
317	Bismuth Subcarbonate with Designer Defects for Broad-Spectrum Photocatalytic Nitrogen Fixation. <i>ACS Applied Materials & amp; Interfaces</i> , 2018 , 10, 25321-25328	9.5	66
316	Synthesis of nanosheet-based hierarchical BiO2 microtubes and its photocatalytic performance. Applied Surface Science, 2018, 455, 616-621	6.7	18

315	Magnetically Separable Rice Husk Char-Supported Nickel Ferrite Photocatalyst with High Photoactivity under Visible-Light Irradiation. <i>Nano</i> , 2018 , 13, 1850067	1.1	3
314	In-situ self-sacrificial fabrication of lanthanide hydroxycarbonates/graphitic carbon nitride heterojunctions: nitrogen photofixation under simulated solar light irradiation. <i>Chemical Engineering Journal</i> , 2018 , 347, 849-859	14.7	44
313	A new method for scour monitoring based on fiber Bragg grating. <i>Measurement: Journal of the International Measurement Confederation</i> , 2018 , 127, 431-435	4.6	6
312	Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life. <i>Journal of Power Sources</i> , 2018 , 378, 31-39	8.9	87
311	Nitrogen-doped carbon black supported NiCo2S4 catalyst for hydrogenation of nitrophenols under mild conditions. <i>Journal of Materials Science</i> , 2018 , 53, 4467-4481	4.3	13
310	The enhanced adhesion between overlong TiNxOy/MnO2 nanoarrays and Ti substrate: Towards flexible supercapacitors with high energy density and long service life. <i>Nano Energy</i> , 2018 , 43, 91-102	17.1	45
309	CoSe-Decorated NbSe Nanosheets Fabricated via Cation Exchange for Li Storage. <i>ACS Applied Materials & Discourse Materials & Discour</i>	9.5	10
308	Hollow mesoporous carbon spheres enwrapped by small-sized and ultrathin nickel hydroxide nanosheets for high-performance hybrid supercapacitors. <i>Journal of Power Sources</i> , 2018 , 402, 43-52	8.9	32
307	Synthesis of Carbon-Nitrogen-Phosphorous Materials with an Unprecedented High Amount of Phosphorous toward an Efficient Fire-Retardant Material. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9764-9769	16.4	21
306	Carboxylic acid-functionalized cadmium sulfide/graphitic carbon nitride composite photocatalyst with well-combined interface for sulfamethazine degradation. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2018 , 364, 22-31	4.7	16
305	Pt nanocrystals grown on three-dimensional architectures made from graphene and MoS2 nanosheets: Highly efficient multifunctional electrocatalysts toward hydrogen evolution and methanol oxidation reactions. <i>Carbon</i> , 2018 , 139, 369-377	10.4	58
304	Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. <i>Applied Catalysis B: Environmental</i> , 2017 , 200, 39-46	21.8	65
303	An ion exchange strategy to BiOI/CH3COO(BiO) heterojunction with enhanced visible-light photocatalytic activity. <i>Applied Surface Science</i> , 2017 , 403, 103-111	6.7	28
302	Self-Standing Carbon Nitride-Based Hydrogels with High Photocatalytic Activity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 2029-2034	9.5	58
301	In situ self-assembled synthesis of Ag-AgBr/Al-MCM-41 with excellent activities of adsorption-photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2017 , 209, 329-338	21.8	39
300	One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity. <i>Applied Catalysis B: Environmental</i> , 2017 , 206, 319-327	21.8	262
299	Synthesis of Unique Flowerlike Bi O (OH)(NO) Hierarchical Microstructures with High Surface Area and Superior Photocatalytic Performance. <i>Chemistry - A European Journal</i> , 2017 , 23, 3891-3897	4.8	30
298	Room-temperature synthesis of BiOCl and (BiO) 2 CO 3 with predominant {001} facets induced by urea and their photocatalytic performance. <i>Journal of Environmental Chemical Engineering</i> , 2017 , 5, 987	-88 ₄	13

(2017-2017)

297	Facile surfactant assistant synthesis of porous oxygen-doped graphitic carbon nitride nanosheets with enhanced visible light photocatalytic activity. <i>Materials Research Bulletin</i> , 2017 , 91, 42-48	5.1	35
296	Smart and designable grapheneBiO2 nanocomposites with multifunctional applications in silicone elastomers and polyaniline supercapacitors. <i>RSC Advances</i> , 2017 , 7, 11478-11490	3.7	8
295	Build a Rigid-Flexible Graphene/Silicone Interface by Embedding SiO for Adhesive Application. <i>ACS Omega</i> , 2017 , 2, 1063-1073	3.9	12
294	Two basic bismuth nitrates: [Bi6O6(OH)2](NO3)4[I2H2O with superior photodegradation activity for rhodamine B and [Bi6O5(OH)3](NO3)5[I3H2O with ultrahigh adsorption capacity for methyl orange. <i>Applied Surface Science</i> , 2017 , 422, 283-294	6.7	25
293	Acetate anion-intercalated nickel-cobalt layered double hydroxide nanosheets supported on Ni foam for high-performance supercapacitors with excellent long-term cycling stability. <i>Electrochimica Acta</i> , 2017 , 236, 18-27	6.7	101
292	3D Hierarchically Porous Graphitic Carbon Nitride Modified Graphene-Pt Hybrid as Efficient Methanol Oxidation Catalysts. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1601219	4.6	17
291	One-pot synthesis of 3D hierarchical Bi 2 S 3 /(BiO) 2 CO 3 hollow microspheres at room temperature and their photocatalytic performance. <i>Materials Chemistry and Physics</i> , 2017 , 187, 72-81	4.4	14
290	A molybdenum disulfide/reduced oxide-graphene nanoflakelet-on-sheet structure for lithium ion batteries. <i>Applied Surface Science</i> , 2017 , 399, 237-244	6.7	13
289	Self-assembled carbon nitride for photocatalytic hydrogen evolution and degradation of p-nitrophenol. <i>Applied Catalysis B: Environmental</i> , 2017 , 205, 1-10	21.8	78
288	Construction of N-doped carbon@MoSe2 core/branch nanostructure via simultaneous formation of core and branch for high-performance lithium-ion batteries. <i>Electrochimica Acta</i> , 2017 , 256, 19-27	6.7	20
287	NbS Nanosheets with M/Se (M = Fe, Co, Ni) Codopants for Li and Na Storage. ACS Nano, 2017 , 11, 1059	9-10,60	768
286	Localization of platinum nanoparticles on inner walls of mesoporous hollow carbon spheres for improvement of electrochemical stability. <i>Nanoscale</i> , 2017 , 9, 16264-16272	7.7	20
285	Intimately coupled hybrid of carbon black/nickel cobaltite for supercapacitors with enhanced energy-storage properties and ultra-long cycle life. <i>Electrochimica Acta</i> , 2017 , 257, 494-503	6.7	15
284	Dual-Pore Carbon Shells for Efficient Removal of Humic Acid from Water. <i>Chemistry - A European Journal</i> , 2017 , 23, 16249-16256	4.8	10
283	One-Pot Synthesis of Nickel-Modified Carbon Nitride Layers Toward Efficient Photoelectrochemical Cells. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	51
282	From understanding the formation mechanism to enhanced supercapacitor performance of VSB-5 with a hierarchical structure. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16898-16906	13	7
281	Carbon-Induced Generation of Hierarchical Structured NiCo(CO)(OH) for Enhanced Supercapacitor Performance. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 44441-44451	9.5	35
280	Reduction of nitrophenols to aminophenols under concerted catalysis by Au/g-C3N4 contact system. <i>Applied Catalysis B: Environmental</i> , 2017 , 202, 430-437	21.8	198

279	Constructing BiO1.1Br0.8 sheet-sphere junction structure for efficient photocatalytic degradation of aniline. <i>Catalysis Communications</i> , 2017 , 88, 22-25	3.2	6
278	Hydrogenation of nitrophenols catalyzed by carbon black-supported nickel nanoparticles under mild conditions. <i>Applied Catalysis B: Environmental</i> , 2016 , 180, 408-415	21.8	193
277	Design and performance of a novel miniaturized LTCC Wilkinson power divider 2016,		2
276	Cobalt Sulfide/Graphene Composite Hydrogel as Electrode for High-Performance Pseudocapacitors. <i>Scientific Reports</i> , 2016 , 6, 21717	4.9	91
275	One-Step Synthesis of Bi2S3/BiOX and Bi2S3/(BiO)2CO3 Heterojunction Photocatalysts by Using Aqueous Thiourea Solution as Both Solvent and Sulfur Source. <i>ChemistrySelect</i> , 2016 , 1, 6136-6145	1.8	6
274	A simple grinding-calcination approach to prepare the Co3O4Ih2O3 heterojunction structure with high-performance gas-sensing property toward ethanol. <i>RSC Advances</i> , 2016 , 6, 105262-105269	3.7	11
273	Synthesis of Cobalt Sulfide/Sulfur Doped Carbon Nanocomposites with Efficient Catalytic Activity in the Oxygen Evolution Reaction. <i>Chemistry - A European Journal</i> , 2016 , 22, 18259-18264	4.8	39
272	Graphene-based cobalt sulfide composite hydrogel with enhanced electrochemical properties for supercapacitors. <i>New Journal of Chemistry</i> , 2016 , 40, 2843-2849	3.6	45
271	Recent advances in graphene-based hybrid nanostructures for electrochemical energy storage. <i>Nanoscale Horizons</i> , 2016 , 1, 340-374	10.8	79
270	Halogen-directed nucleation and growth of Bi 2 O 3 columnar hierarchitectures. <i>Materials Research Bulletin</i> , 2016 , 76, 222-228	5.1	11
269	Solvothermal method coupled with thermal decomposition for synthesis of non-stoichiometric BiO1.18I0.64 with excellent photocatalytic activity. <i>RSC Advances</i> , 2016 , 6, 2641-2650	3.7	13
268	In-situ preparation of three-dimensional Ni@graphene-Cu composites for ultrafast reduction of Cr(VI) at room temperature. <i>Catalysis Communications</i> , 2016 , 75, 13-17	3.2	33
267	A new type of temperature-based sensor for monitoring of bridge scour. <i>Measurement: Journal of the International Measurement Confederation</i> , 2016 , 78, 245-252	4.6	14
266	Synthesis of EBi2O3 microflowers and nanosheets using CH3COO(BiO) self-sacrifice precursor. <i>Materials Letters</i> , 2016 , 162, 218-221	3.3	34
265	Intimately coupled hybrid of graphitic carbon nitride nanoflakelets with reduced graphene oxide for supporting Pd nanoparticles: A stable nanocatalyst with high catalytic activity towards formic acid and methanol electrooxidation. <i>Electrochimica Acta</i> , 2016 , 200, 131-141	6.7	43
264	A facile and rapid room-temperature route to hierarchical bismuth oxyhalide solid solutions with composition-dependent photocatalytic activity. <i>Journal of Colloid and Interface Science</i> , 2016 , 477, 25-3	3 ^{9.3}	22
263	Effect of the counter ions on composition and morphology of bismuth oxyhalides and their photocatalytic performance. <i>Chemical Engineering Journal</i> , 2016 , 299, 217-226	14.7	36
262	Solvent- and catalyst-free synthesis of imidazo[1,2-a]pyridines under microwave irradiation. <i>Journal of Chemical Research</i> , 2016 , 40, 529-531	0.6	10

(2015-2016)

261	Hollow Amorphous MnSnO3 Nanohybrid with Nitrogen-Doped Graphene for High-Performance Lithium Storage. <i>Electrochimica Acta</i> , 2016 , 214, 1-10	6.7	21
260	Synthesis of ⊞e2O3 with the aid of graphene and its gas-sensing property to ethanol. <i>Ceramics International</i> , 2015 , 41, 6978-6984	5.1	14
259	Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. <i>Nano Energy</i> , 2015 , 12, 816-823	17.1	86
258	Recent advances on multi-component hybrid nanostructures for electrochemical capacitors. Journal of Power Sources, 2015 , 294, 31-50	8.9	94
257	Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach. <i>Nanoscale</i> , 2015 , 7, 13723-33	7.7	176
256	Synthesis of acidified palygorskite/BiOI with exceptional performances of adsorption and visible-light photoactivity for efficient treatment of aniline wastewater. <i>Applied Clay Science</i> , 2015 , 114, 124-132	5.2	39
255	Optimizing Hybridization of 1T and 2H Phases in MoS2 Monolayers to Improve Capacitances of Supercapacitors. <i>Materials Research Letters</i> , 2015 , 3, 177-183	7.4	121
254	Preparing Bi12SiO20 crystals at low temperature through nontopotactic solid-state transformation and improving its photocatalytic activity by etching. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7413-742	1 ¹³	38
253	3D Hierarchical Mesoporous Flowerlike Cobalt Oxide Nanomaterials: Controllable Synthesis and Electrochemical Properties. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 8537-8546	3.8	41
252	PlatinumBalladium bimetallic nanoparticles on graphitic carbon nitride modified carbon black: A highly electroactive and durable catalyst for electrooxidation of alcohols. <i>Journal of Power Sources</i> , 2015 , 300, 41-48	8.9	33
251	Controlled synthesis of bismuth-containing compounds (日日and EBi2O3, Bi5O7NO3 and Bi6O6(OH)2(NO3)4[2H2O) and their photocatalytic performance. <i>CrystEngComm</i> , 2015 , 17, 9185-9192	3.3	38
250	Strongly coupled manganese ferrite/carbon black/polyaniline hybrid for low-cost supercapacitors with high rate capability. <i>Electrochimica Acta</i> , 2015 , 185, 218-228	6.7	89
249	Deposition of cocoon-like ZnO on graphene sheets for improving gas-sensing properties to ethanol. <i>Applied Surface Science</i> , 2015 , 357, 1593-1600	6.7	26
248	Highly dispersed palladium nanoparticles on commercial carbon black with significantly high electro-catalytic activity for methanol and ethanol oxidation. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 12382-12391	6.7	22
247	Manganese ferritegraphene nanocomposite as a high-performance anode material for lithium-ion batteries. <i>International Journal of Materials Research</i> , 2015 , 106, 915-918	0.5	2
246	Nanosized Pt anchored onto 3D nitrogen-doped graphene nanoribbons towards efficient methanol electrooxidation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19696-19701	13	49
245	Three-dimensional nickel hydroxide/graphene composite hydrogels and their transformation to NiO/graphene composites for energy storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 21682-21689	13	26
244	Design and synthesis of palladium/graphitic carbon nitride/carbon black hybrids as high-performance catalysts for formic acid and methanol electrooxidation. <i>Journal of Power Sources</i> , 2015 , 275, 734-741	8.9	71

243	Synthesis of egg-tart shaped Bi2O2CO3 hierarchical nanostructures from single precursor and its photocatalytic performance. <i>Materials Letters</i> , 2015 , 138, 235-237	3.3	24
242	Controlled growth of nanostructured MnO2 on carbon nanotubes for high-performance electrochemical capacitors. <i>Electrochimica Acta</i> , 2015 , 152, 480-488	6.7	67
241	Green SuzukiMiyaura coupling reaction catalyzed by palladium nanoparticles supported on graphitic carbon nitride. <i>Applied Catalysis B: Environmental</i> , 2015 , 165, 661-667	21.8	121
240	Highly efficient removal of aqueous chromate and organic dyes by ultralong HCOOBiO nanowires. <i>Chemical Engineering Journal</i> , 2015 , 262, 169-178	14.7	34
239	Well-Combined Magnetically Separable Hybrid Cobalt Ferrite/Nitrogen-Doped Graphene as Efficient Catalyst with Superior Performance for Oxygen Reduction Reaction. <i>Small</i> , 2015 , 11, 5833-43	11	63
238	Fabrication of an exfoliated graphitic carbon nitride as a highly active visible light photocatalyst. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 24237-24244	13	108
237	Synthesis of ZnOAg Hybrids and Their Gas-Sensing Performance toward Ethanol. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 8947-8953	3.9	63
236	Synthesis of CdS multipods from cadmium xanthate in ethylenediamine solution. <i>Particuology</i> , 2015 , 19, 45-52	2.8	7
235	Preparation of Copper-Embedded Graphene Nanocomposites for Catalytic Hydroxylation of Benzene to Phenol. <i>Current Organic Chemistry</i> , 2015 , 18, 3136-3140	1.7	9
234	Design and synthesis of ternary cobalt ferrite/graphene/polyaniline hierarchical nanocomposites for high-performance supercapacitors. <i>Journal of Power Sources</i> , 2014 , 245, 937-946	8.9	196
233	Exceptional visible-light-induced photocatalytic activity of attapulgiteBiOBrIiO2 nanocomposites. <i>Applied Clay Science</i> , 2014 , 90, 135-140	5.2	27
232	High-performance asymmetric supercapacitors based on MnFe2O4/graphene nanocomposite as anode material. <i>Materials Letters</i> , 2014 , 122, 193-196	3.3	56
231	Four MOFs with 2,2?-dimethoxy-4,4?-biphenyldicarboxylic acid: syntheses, structures, topologies and properties. <i>CrystEngComm</i> , 2014 , 16, 784-796	3.3	52
230	Catalytic hydrogenation of nitrophenols and nitrotoluenes over a palladium/graphene nanocomposite. <i>Catalysis Science and Technology</i> , 2014 , 4, 1742-1748	5.5	145
229	Synthesis of Bi nanowire networks and their superior photocatalytic activity for Cr(vi) reduction. <i>Nanoscale</i> , 2014 , 6, 10062-70	7.7	51
228	Synthesis and electrochemical properties of graphene oxide/manganese oxide/polyaniline and its reduced composites. <i>RSC Advances</i> , 2014 , 4, 56615-56624	3.7	13
227	Chemically integrated two-dimensional hybrid zinc manganate/graphene nanosheets with enhanced lithium storage capability. <i>ACS Nano</i> , 2014 , 8, 8610-6	16.7	137
226	Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode. <i>Nanoscale</i> , 2014 , 6, 12555-64	7.7	163

225	Adsorption of Perfluorooctane Sulfonate and Perfluorooctanoic Acid on Magnetic Mesoporous Carbon Nitride. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 508-515	2.8	41
224	A COST-EFFECTIVE MAGNETIC PHOTOCATALYST PALYGORSKITEIIiO2EexOy WITH EXCELLENT PERFORMANCE FOR DYE PHOTODEGRADATION UNDER VISIBLE LIGHT. <i>Nano</i> , 2014 , 09, 1450063	1.1	
223	Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. <i>Advanced Materials</i> , 2014 , 26, 5160-5	24	304
222	In-situ and self-distributed: A new understanding on catalyzed thermal decomposition process of ammonium perchlorate over Nd2O3. <i>Journal of Solid State Chemistry</i> , 2014 , 213, 235-241	3.3	20
221	Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors. <i>Journal of Power Sources</i> , 2014 , 269, 250-259	8.9	106
220	Synthesis of Bi2O3 architectures in DMFH2O solution by precipitation method and their photocatalytic activity. <i>Journal of Alloys and Compounds</i> , 2014 , 614, 353-359	5.7	33
219	Palladium nanoparticles supported on graphitic carbon nitride-modified reduced graphene oxide as highly efficient catalysts for formic acid and methanol electrooxidation. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19084-19094	13	113
218	The relationship between modulated morphology of attapulgite/polypyrrole composites and electrical property. <i>Materials Letters</i> , 2014 , 126, 135-138	3.3	3
217	Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance. <i>Journal of Power Sources</i> , 2014 , 266, 384-392	8.9	137
216	A facile synthesis of Ag@graphene-nanosheet composite with enhanced antibacterial activity and acceptable environmental safety. <i>Monatshefte Fil Chemie</i> , 2014 , 145, 3-10	1.4	8
215	Enhanced photo-electrochemical performances of graphene-based composite functionalized by Zn2+ tetraphenylporphyrin. <i>Applied Surface Science</i> , 2014 , 321, 404-411	6.7	13
214	LiNi0.5Mn1.5O4 nanorod clusters as cathode material for high energy and high power lithium-ion batteries. <i>Journal of Nanoscience and Nanotechnology</i> , 2014 , 14, 7038-44	1.3	13
213	Reduced graphene oxide decorated with CuOInO hetero-junctions: towards high selective gas-sensing property to acetone. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18635-18643	13	125
212	Adsorption of Pb(II) Using Magnetic Titanate Nanotubes Prepared via Two-Step Hydrothermal Method. <i>Clean - Soil, Air, Water</i> , 2014 , 42, 947-955	1.6	6
211	A g-C3N4IIdS composite catalyst with high visible-light-driven catalytic activity and photostability for methylene blue degradation. <i>Applied Surface Science</i> , 2014 , 295, 164-172	6.7	209
210	Fabrication of Fe2O3@graphene nanostructures for enhanced gas-sensing property to ethanol. <i>Applied Surface Science</i> , 2014 , 292, 278-284	6.7	73
209	Magnetically separable attapulgitelliO2HexOy composites with superior activity towards photodegradation of methyl orange under visible light radiation. <i>Journal of Industrial and Engineering Chemistry</i> , 2014 , 20, 3884-3889	6.3	29
208	Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6266-6291	13	393

A ternary Pt/MnO2/graphene nanohybrid with an ultrahigh electrocatalytic activity toward

methanol oxidation. Journal of Power Sources, 2013, 239, 189-195

8.9

64

190

189	One-step synthesis of CoMoO4/graphene composites with enhanced electrochemical properties for supercapacitors. <i>Electrochimica Acta</i> , 2013 , 99, 253-261	6.7	190
188	Fe3O4/carbon corelhell nanotubes as promising anode materials for lithium-ion batteries. <i>Journal of Power Sources</i> , 2013 , 241, 486-493	8.9	82
187	Photosynthesis of Multiple Valence Silver Nanoparticles on Reduced Graphene Oxide Sheets With Enhanced Antibacterial Activity. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , 2013 , 43, 440-445		5
186	In Situ Monitoring of the Nucleation of Polyaniline Nanoparticles from Sodium Dodecyl Sulfate Micelles: A Nuclear Magnetic Resonance Study. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 9477-9484	3.8	8
185	Magnetic Bi25FeO40-graphene catalyst and its high visible-light photocatalytic performance. <i>RSC Advances</i> , 2013 , 3, 4332	3.7	68
184	Graphene sheets-based Ag@Ag3PO4 heterostructure for enhanced photocatalytic activity and stability under visible light. <i>Powder Technology</i> , 2013 , 246, 278-283	5.2	34
183	Cadmium Sulfide Perrite Nanocomposite as a Magnetically Recyclable Photocatalyst with Enhanced Visible-Light-Driven Photocatalytic Activity and Photostability. <i>Industrial & amp; Engineering Chemistry Research</i> , 2013 , 52, 17126-17133	3.9	77
182	Facile synthesis of low-defect-density graphene/MnO2 composite and its electrochemical performance. <i>Journal of Nanoscience and Nanotechnology</i> , 2013 , 13, 487-92	1.3	1
181	Adsorption of perfluorooctane sulfonate (PFOS) on mesoporous carbon nitride. <i>RSC Advances</i> , 2013 , 3, 22480	3.7	37
180	Liquid I quid interfacial synthesis of single-crystalline PbS nanoplates and nanocube-based microspheres. <i>Materials Letters</i> , 2012 , 69, 10-12	3.3	8
179	Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells. <i>Journal of Power Sources</i> , 2012 , 204, 46-52	8.9	145
178	Nickel ferritegraphene heteroarchitectures: Toward high-performance anode materials for lithium-ion batteries. <i>Journal of Power Sources</i> , 2012 , 213, 338-342	8.9	129
177	Hydrothermal preparation of Co3O4@graphene nanocomposite for supercapacitor with enhanced capacitive performance. <i>Materials Letters</i> , 2012 , 82, 61-63	3.3	108
176	Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance. <i>Nano Research</i> , 2012 , 5, 11-19	10	84
175	Room-temperature synthesis of self-assembled Sb2S3 films and nanorings via a two-phase approach. <i>Langmuir</i> , 2012 , 28, 6726-30	4	13
174	Copper Ferrite-Graphene Hybrid: A Multifunctional Heteroarchitecture for Photocatalysis and Energy Storage. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 11700-11709	3.9	166
173	Nano or micro? A mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate. <i>Journal of Hazardous Materials</i> , 2012 , 225-226, 124-30	12.8	37
172	Preparation and properties of 4, 4?-diphenylmethane diisocyanate blocking modified poly(propylene carbonate). <i>Journal of Applied Polymer Science</i> , 2012 , 128, n/a-n/a	2.9	1

171	Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. <i>RSC Advances</i> , 2012 , 2, 10268	3.7	164
170	Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: Synthesis and properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8314		145
169	Pd nanoparticles supported on low-defect graphene sheets: for use as high-performance electrocatalysts for formic acid and methanol oxidation. <i>Journal of Materials Chemistry</i> , 2012 , 22, 2253	3	149
168	Low-defect multi-walled carbon nanotubes supported PtCo alloy nanoparticles with remarkable performance for electrooxidation of methanol. <i>Electrochimica Acta</i> , 2012 , 80, 118-125	6.7	37
167	CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries. <i>Electrochimica Acta</i> , 2012 , 83, 166-174	6.7	173
166	In situ assembly of Ag2O nanoparticles on low defect density carbon nanotubes. <i>Materials Chemistry and Physics</i> , 2012 , 136, 666-672	4.4	3
165	Efficient removal of methylene blue over composite-phase BiVO4 fabricated by hydrothermal control synthesis. <i>Materials Chemistry and Physics</i> , 2012 , 136, 897-902	4.4	46
164	Self-assembly of Ag-TiO2 nanoparticles: Synthesis, characterization and catalytic application. <i>Journal Wuhan University of Technology, Materials Science Edition</i> , 2012 , 27, 847-851	1	4
163	Cobalt ferritepolyaniline heteroarchitecture: a magnetically recyclable photocatalyst with highly enhanced performances. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17485		152
162	Graphene oxide-mediated synthesis of stable metal nanoparticle colloids. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 404, 78-82	5.1	29
161	Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors. <i>Journal of Materials Chemistry</i> , 2012 , 22, 16844		178
160	High Photocatalytic Activity of Magnetically Separable Manganese Ferrite@raphene Heteroarchitectures. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 725-731	3.9	157
159	Graphene-supported nickel ferrite: A magnetically separable photocatalyst with high activity under visible light. <i>AICHE Journal</i> , 2012 , 58, 3298-3305	3.6	84
158	Multi-walled carbon nanotubes supported nickel ferrite: A magnetically recyclable photocatalyst with high photocatalytic activity on degradation of phenols. <i>Chemical Engineering Journal</i> , 2012 , 195-196, 149-157	14.7	109
157	Combination of cobalt ferrite and graphene: High-performance and recyclable visible-light photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2012 , 111-112, 280-287	21.8	288
156	Study on Enhancement Adsorption of Pipemidic Acid from Aqueous Solution by Using an Amino Group Modified Hypercrosslinked Polymeric Adsorbents. <i>Advanced Materials Research</i> , 2012 , 468-471, 1239-1242	0.5	
155	Low-Defect MWNT B t Nanocomposite as a High Performance Electrocatalyst for Direct Methanol Fuel Cells. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 19405-19412	3.8	72
154	Growth of copper sulfide dendrites and nanowires from elemental sulfur on TEM Cu grids under ambient conditions. <i>Nanotechnology</i> , 2011 , 22, 155607	3.4	7

153	Monodispersed Protein Stabilized Silver Nanoprisms: Synthesis, Optical Properties and Surface-Enhanced Raman Scattering Application. <i>Materials Science Forum</i> , 2011 , 688, 162-167	0.4	1
152	Room-temperature synthesis from molecular precursors and photocatalytic activities of ultralong Sb2S3 nanowires. <i>RSC Advances</i> , 2011 , 1, 1364	3.7	28
151	Palygorskite and SnO2IIiO2 for the photodegradation of phenol. <i>Applied Clay Science</i> , 2011 , 51, 68-73	5.2	51
150	Magnetically Separable ZnFe2O4©raphene Catalyst and its High Photocatalytic Performance under Visible Light Irradiation. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 7210-7218	3.9	458
149	Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability. <i>Nanoscale</i> , 2011 , 3, 2169-74	7.7	117
148	Great influence of a small amount of capping agents on the morphology of SnS particles using xanthate as precursor. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 2180-2185	5.7	24
147	Growth and photocatalytic activity of ZnO nanosheets stabilized by Ag nanoparticles. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 4972-4977	5.7	52
146	Controlled morphologies and optical properties of ZnO films and their photocatalytic activities. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 9255-9263	5.7	17
145	Synthesis and characterization of graphene paper with controllable properties via chemical reduction. <i>Journal of Materials Chemistry</i> , 2011 , 21, 14631		80
144	Preparation of Ag2S©raphene nanocomposite from a single source precursor and its surface-enhanced Raman scattering and photoluminescent activity. <i>Materials Characterization</i> , 2011 , 62, 1094-1101	3.9	47
143	Depositing ZnO nanoparticles onto graphene in a polyol system. <i>Materials Chemistry and Physics</i> , 2011 , 125, 617-620	4.4	84
142	Synthesis and characterization of KNd2Ti3O9.5 nanocrystal and its catalytic effect on decomposition of ammonium perchlorate. <i>Materials Chemistry and Physics</i> , 2011 , 125, 322-325	4.4	8
141	Two-photon absorption, nonlinear optical and UVII is spectral properties of 2-furanylmethyleneaminoantipyrine, benzylideneaminoantipyrine and cinnamilideneaminoantipyrine. <i>Materials Chemistry and Physics</i> , 2011 , 129, 217-222	4.4	17
140	BiVO4graphene catalyst and its high photocatalytic performance under visible light irradiation. <i>Materials Chemistry and Physics</i> , 2011 , 131, 325-330	4.4	163
139	The facile synthesis of PbS cubes and Bi2S3 nanoflowers from molecular precursors at room temperature. <i>Materials Letters</i> , 2011 , 65, 3344-3347	3.3	7
138	A template self-assembly strategy to synthesize free-standing TiO2MO (M=Mg, Co, Ni, Cu or Zn) colloidal films. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2011 , 392, 242-249	5.1	3
137	Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach. <i>Nanoscale</i> , 2011 , 3, 3185-91	7.7	107
136	Gelatin-assisted porous expansion of mesoporous silica. <i>Journal of Materials Science</i> , 2011 , 46, 634-640	4.3	1

135	Electrochemical capacitance study on Co3O4 nanowires for super capacitors application. <i>Journal of Materials Science: Materials in Electronics</i> , 2011 , 22, 601-606	2.1	37
134	Formation and optical properties of silver superlattice using hydrazine hydrate as reducing agent. <i>Microsystem Technologies</i> , 2011 , 17, 1293-1299	1.7	6
133	Synthesis of single-crystal silver slices with predominant (1 1 1) facet and their SERS effect. <i>Journal of Molecular Structure</i> , 2011 , 985, 82-85	3.4	25
132	Self-assembled synthesis of Ag nanodendrites and their applications to SERS. <i>Journal of Molecular Structure</i> , 2011 , 997, 64-69	3.4	15
131	Morphology-controlled fabrication of sulfonated graphene/polyaniline nanocomposites by liquid/liquid interfacial polymerization and investigation of their electrochemical properties. <i>Nano Research</i> , 2011 , 4, 323-333	10	99
130	Self-assembly and photocatalytic property of amorphous cubic-like TiO2-ZnO hybrid film. <i>Rare Metals</i> , 2011 , 30, 225-228	5.5	3
129	Synthesis of rod-like ultrafine K4Ce2Nb10O30 via a salt-assistant stearic acid method. <i>Journal of Rare Earths</i> , 2011 , 29, 664-667	3.7	
128	Preparation and Characterization of Graphene Oxide-ZnO Nanocomposites. <i>Materials Science Forum</i> , 2011 , 688, 228-232	0.4	4
127	One-step synthesis of low defect density carbon nanotube-doped Ni(OH)2 nanosheets with improved electrochemical performances. <i>RSC Advances</i> , 2011 , 1, 484	3.7	64
126	Super Molecular-polarization Phenomenon of Poly (ethylene glycol) in Deionized Water. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2011 , 48, 688-691	2.2	2
125	Effect of glucose on self-assembly of free-standing airWater interfacial lamellar ZrO2 films. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2011 , 380, 182-190	5.1	4
124	An in situ oxidation route to fabricate graphene nanoplateThetal oxide composites. <i>Journal of Solid State Chemistry</i> , 2011 , 184, 1393-1399	3.3	22
123	Optical properties of monodispersed silver nanoparticles produced via reverse micelle microemulsion. <i>Physica B: Condensed Matter</i> , 2011 , 406, 1389-1394	2.8	17
122	Green synthesis of graphene oxide sheets decorated by silver nanoprisms and their anti-bacterial properties. <i>Journal of Inorganic Biochemistry</i> , 2011 , 105, 1181-6	4.2	91
121	Influence of counter-ions on the self-assembly of ZrO2 nanodisks. <i>Journal of Colloid and Interface Science</i> , 2011 , 353, 356-62	9.3	10
120	Self-assembly of disk-like multiring ZnO-SnO2 colloidal nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2011 , 356, 412-5	9.3	4
119	Study on the Catalytic Properties of Bicomponent Nanooxides in the Thermal Decomposition of Ammonium Perchlorate. <i>Integrated Ferroelectrics</i> , 2011 , 128, 37-43	0.8	
118	Theoretical Study on EComplexes in Ring-Chlorination of Toluene. <i>Advanced Materials Research</i> , 2011 , 335-336, 1047-1050	0.5	

(2010-2011)

	117	Influence of the PH Value of Comb-Shaped Polymer on the Adsorption between the Polymer and Ca2+ Ions. <i>Advanced Materials Research</i> , 2011 , 287-290, 626-631	0.5	1
	116	Sputtering Phenomena of ZnS Nanoparticles with Graphite Sheaths by Impacting of High-Energy Electron in a Transmission Electron Microscope. <i>Advanced Materials Research</i> , 2011 , 194-196, 576-580	0.5	
	115	Study on the Adsorption Behavior of Ca2+ Ions on Comb-Like Polycarboxylate Polymers in the CaCl2 Solution. <i>Advanced Materials Research</i> , 2011 , 233-235, 2176-2180	0.5	1
	114	Preparation of a New Kind of Ultra-High Performance Water Reducer and its Application Study. <i>Advanced Materials Research</i> , 2011 , 250-253, 795-799	0.5	1
	113	Influence of the Structure of Comb-Shaped Polymer on the Adsorption between the Polymer and SO42- Ions. <i>Key Engineering Materials</i> , 2011 , 480-481, 311-316	0.4	1
	112	One-Step Synthesis of ZnS Nanocrystals with Graphite Sheaths from a Single-Source Precursor. <i>Advanced Materials Research</i> , 2011 , 194-196, 1676-1679	0.5	
,	111	Quantum confinement effects on charge-transfer between PbS quantum dots and 4-mercaptopyridine. <i>Journal of Chemical Physics</i> , 2011 , 134, 024707	3.9	57
	110	Influences of ionic environment on self-assembly behaviour of hyperbranched polymers. <i>Physics and Chemistry of Liquids</i> , 2011 , 49, 753-764	1.5	
	109	Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study. <i>Nanoscale Research Letters</i> , 2011 , 6, 22	5	38
	108	The Preparation and Photocatalytic Activity of Ni-Doped ZnS Nanoparticles. <i>Advanced Materials Research</i> , 2010 , 148-149, 845-848	0.5	1
	107	Synthesis of CuO Nanocrystals in a Water-Isopropanol System. <i>Advanced Materials Research</i> , 2010 , 148-149, 1011-1015	0.5	
	106	Preparation and Physicochemical Properties of Concrete Slump-Loss Resistance Agent for Small Slump. <i>Advanced Materials Research</i> , 2010 , 168-170, 2158-2164	0.5	
	105	4,4Q(2,7-Dibromo-fluorene-9,9-di-yl)dimethyl-ene]dipyridinium bis-(perchlorate). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2010 , 66, o1718		
	104	In Situ Fabrication of Nanoscale Graphene Oxide/Polyaniline Composite and its Electrochemical Properties. <i>Advanced Materials Research</i> , 2010 , 148-149, 1547-1550	0.5	2
:	103	Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision. <i>Nanoscale</i> , 2010 , 2, 287-92	7.7	138
	102	One-Step Synthesis of Graphene Lobalt Hydroxide Nanocomposites and Their Electrochemical Properties. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 11829-11834	3.8	293
	101	Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives. <i>Nanoscale</i> , 2010 , 2, 1461-6	7.7	148
	100	Electrochemical Polymerization and Properties of Poly(triphenylene), an Excellent Blue-Green-Light Emitter. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 9608-9617	3.8	14

99	Crystallization of Complexes Characterized with Streaming Potential Measurement. <i>Journal of Chemical & Chemic</i>	2.8	
98	Intercalated polyaniline nanosheets prepared from lyotropic liquid crystalline solutions and their capacitive performance. <i>Synthetic Metals</i> , 2010 , 160, 989-995	3.6	12
97	Effect of graphene oxide on the properties of its composite with polyaniline. <i>ACS Applied Materials & Amp; Interfaces</i> , 2010 , 2, 821-8	9.5	531
96	Graphene oxideMnO2 nanocomposites for supercapacitors. <i>ACS Nano</i> , 2010 , 4, 2822-30	16.7	1802
95	From graphene to metal oxide nanolamellas: a phenomenon of morphology transmission. <i>ACS Nano</i> , 2010 , 4, 6212-8	16.7	107
94	Decorating graphene oxide with CuO nanoparticles in a water-isopropanol system. <i>Nanoscale</i> , 2010 , 2, 988-94	7.7	153
93	Study on a novel oil-in-water-type microemulsion system of water/Triton X-100/Tween80/n-hexyl alcohol/n-octane. <i>Physics and Chemistry of Liquids</i> , 2010 , 48, 19-28	1.5	4
92	Liquid/Liquid Interfacial Polymerization to Fabricate Sulfonated Graphene/Polyaniline Nanocomposite for Supercapacitors. <i>Applied Mechanics and Materials</i> , 2010 , 29-32, 1902-1906	0.3	2
91	A nanostructured graphene/polyaniline hybrid material for supercapacitors. <i>Nanoscale</i> , 2010 , 2, 2164-7	70 7.7	536
90	Ag2O nanoparticle clusters coated with porous gelatin-g-PMMA copolymer. <i>Current Applied Physics</i> , 2010 , 10, 776-782	2.6	3
89	Preparation and electrochemical properties of mesoporous Co3O4 crater-like microspheres as supercapacitor electrode materials. <i>Current Applied Physics</i> , 2010 , 10, 1422-1426	2.6	96
88	Low-temperature synthesis of uniform Sb2S3 nanorods and its visible-light-driven photocatalytic activities. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2010 , 166, 118-121	3.1	31
87	Synthesis and characterization of ultrafine Ln2Ti2O7 (Ln=Sm, Gd, Dy, Er) pyrochlore oxides by stearic acid method. <i>Materials Characterization</i> , 2010 , 61, 154-158	3.9	18
86	Effects of calcination temperature and solution pH value on the structural and magnetic properties of Ba2Co2Fe12O22 ferrite via EDTA-complexing process. <i>Materials Chemistry and Physics</i> , 2010 , 123, 551-556	4.4	32
85	Morphology-controlled synthesis of ZnS nanostructures via single-source approaches. <i>Materials Research Bulletin</i> , 2010 , 45, 813-817	5.1	13
84	Gelatin-g-poly(methyl methacrylate)/silver nanoparticle hybrid films and the evaluation of their antibacterial activity. <i>Journal of Applied Polymer Science</i> , 2010 , 116, NA-NA	2.9	1
83	Surface-enhanced Raman scattering of silylated graphite oxide sheets sandwiched between colloidal silver nanoparticles and silver piece. <i>Journal of Raman Spectroscopy</i> , 2010 , 41, 370-373	2.3	11
82	ZrO2BnO2 nanocomposite film containing superlattice ribbons. <i>Journal of Molecular Structure</i> , 2010 , 975, 47-52	3.4	10

(2009-2010)

81	Facile solvothermal synthesis of graphene MnOOH nanocomposites. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 2552-2557	3.3	16
80	Non-isothermal crystallization kinetics of nylon 6/attapulgite nanocomposites. <i>Polymer Testing</i> , 2010 , 29, 596-602	4.5	30
79	Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. <i>Carbon</i> , 2010 , 48, 1171-1176	10.4	224
78	Porous copolymer film materials by using free radical copolymerization and its side reaction product, homopolymer, as template. <i>European Polymer Journal</i> , 2010 , 46, 1679-1687	5.2	5
77	Preparation, characterization and luminescence of Sm3+ or Eu3+ doped Sr2CeO4 by a modified sol-gel method. <i>Journal of Rare Earths</i> , 2010 , 28, 513-518	3.7	24
76	An Efficient Algorithm for Infrared Small Target Detection 2009 ,		2
75	Bis[2,6-bis-(4,5-dihydro-1H-imidazol-2-yl)pyridine]manganese(II) bis-(per-chlorate) acetonitrile solvate. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2009 , 65, m1023-4		2
74	Two-dimensional monolayers of single-crystalline Fe2O3 nanospheres: Preparation, characterization and SERS effect. <i>Materials Letters</i> , 2009 , 63, 185-187	3.3	24
73	Synthesis and characterization of poly (o-phenylenediamine) hollow multi-angular microrods by interfacial method. <i>Materials Letters</i> , 2009 , 63, 334-336	3.3	23
72	Synthesis of Sb2S3 peanut-shaped superstructures. <i>Materials Letters</i> , 2009 , 63, 1030-1032	3.3	31
71	Preparation of rod-like Sb2S3 dendrites processed in conventional hydrothermal. <i>Materials Letters</i> , 2009 , 63, 1258-1261	3.3	42
70	A simple chemical route to Bi2S3 hierarchical columniform structures assembled by nanorod-based lamellae. <i>Materials Letters</i> , 2009 , 63, 1611-1613	3.3	9
69	Spontaneous growth of copper sulfide nanowires from elemental sulfur in carbon-coated Cu grids. <i>Materials Letters</i> , 2009 , 63, 2358-2360	3.3	5
68	Surface-enhanced Raman scattering of 4-mercaptopyridine on sub-monolayers of Fe2O3 nanocrystals (sphere, spindle, cube). <i>Journal of Raman Spectroscopy</i> , 2009 , 40, 1290-1295	2.3	58
67	Studies on the possibility of recycling microencapsulated disperse dye-bath effluents. <i>Journal of Applied Polymer Science</i> , 2009 , 113, 3774-3781	2.9	6
66	Experimental and density functional studies on 4-(3,4-dihydroxybenzylideneamino)antipyrine, and 4-(2,3,4-trihydroxybenzylideneamino)antipyrine. <i>Computational and Theoretical Chemistry</i> , 2009 , 904, 74-82		255
65	Experimental and density functional studies on 4-(2,3-dichlorobenzylideneamino)antipyrine and 4-(2,5-dichlorobenzylideneamino)antipyrine. <i>Journal of Molecular Structure</i> , 2009 , 929, 10-21	3.4	31
64	Dimeric sodium naphthalene-1-sulfonate aggregates guided self-assembly of TiO2/naphthylene hybrid nanocomposite film. <i>Journal of Molecular Structure</i> , 2009 , 935, 8-12	3.4	7

63	Preparation of NdCrO3 nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate by DSC/TG-MS. <i>Journal of Thermal Analysis and Calorimetry</i> , 2009 , 97, 903-909	4.1	32
62	An Interesting Complex: [Cd(l -trp) (d-trp)] n. <i>Journal of Inorganic and Organometallic Polymers and Materials</i> , 2009 , 19, 401-405	3.2	4
61	DSC/TG-MS Study on in Situ Catalytic Thermal Decomposition of Ammonium Perchlorate over CoC2O4. <i>Chinese Journal of Catalysis</i> , 2009 , 30, 19-23	11.3	30
60	Cure reaction of multi-walled carbon nanotubes/diglycidyl ether of bisphenol A/2-ethyl-4-methylimidazole (MWCNTs/DGEBA/EMI-2,4) nanocomposites: effect of carboxylic functionalization of MWCNTs. <i>Polymer International</i> , 2009 , 58, 445-452	3.3	28
59	Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates. <i>Small</i> , 2009 , 5, 2212-7	11	287
58	Hydrogen-bond-directed supramolecular arrays in 4,4@bipyridinium tetrachloroterephthalate dihydrate and bis(1,10-phenanthrolinium) tetrachloroterephthalate tetrachloroterephthalic acid trihydrate. <i>Acta Crystallographica Section C: Crystal Structure Communications</i> , 2009 , 65, o525-8		7
57	Study on the catalytic effect of NiO nanoparticles on the thermal decomposition of TEGDN/NC propellant. <i>Journal of Hazardous Materials</i> , 2009 , 168, 838-42	12.8	42
56	Photo degradation of methyl orange by attapulgite-SnO2-TiO2 nanocomposites. <i>Journal of Hazardous Materials</i> , 2009 , 171, 294-300	12.8	92
55	The adsorption behavior of two hydroxyl-terminated Schiff bases on the silver surface and the correlated study of SERS effect. <i>Journal of Molecular Structure</i> , 2009 , 919, 7-11	3.4	3
54	Fabrication of a grapheneduprous oxide composite. <i>Journal of Solid State Chemistry</i> , 2009 , 182, 2486-24	19903	191
54 53	Experimental and theoretical studies on vibrational spectra of 4-(2-furanylmethyleneamino)antipyrine, 4-benzylideneaminoantipyrine and 4-cinnamilideneaminoantipyrine. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular</i>	1903 4·4	191
	Experimental and theoretical studies on vibrational spectra of 4-(2-furanylmethyleneamino)antipyrine, 4-benzylideneaminoantipyrine and		
53	Experimental and theoretical studies on vibrational spectra of 4-(2-furanylmethyleneamino)antipyrine, 4-benzylideneaminoantipyrine and 4-cinnamilideneaminoantipyrine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 892-901 Effect of proteins on the self-assembly of multiring structural ZrO2 nanodisks. Colloids and Surfaces	4.4	12
53 52	Experimental and theoretical studies on vibrational spectra of 4-(2-furanylmethyleneamino)antipyrine, 4-benzylideneaminoantipyrine and 4-cinnamilideneaminoantipyrine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 892-901 Effect of proteins on the self-assembly of multiring structural ZrO2 nanodisks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 1-4	4.4	44 12 1 702
53 52 51	Experimental and theoretical studies on vibrational spectra of 4-(2-furanylmethyleneamino)antipyrine, 4-benzylideneaminoantipyrine and 4-cinnamilideneaminoantipyrine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 892-901 Effect of proteins on the self-assembly of multiring structural ZrO2 nanodisks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 1-4 Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications, 2009, 11, 115 Influence of multi-walled carbon nanotubes on the cure behavior of epoxy-imidazole system.	4·4 5.1 58 <u>5</u> 11161	44 12 1 702
53 52 51 50	Experimental and theoretical studies on vibrational spectra of 4-(2-furanylmethyleneamino)antipyrine, 4-benzylideneaminoantipyrine and 4-cinnamilideneaminoantipyrine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 892-901 Effect of proteins on the self-assembly of multiring structural ZrO2 nanodisks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 1-4 Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications, 2009, 11, 115 Influence of multi-walled carbon nanotubes on the cure behavior of epoxy-imidazole system. Carbon, 2009, 47, 1112-1118 Molecular mechanism for formation of polyaniline lamella from a lyotropic liquid crystal: an NMR	4·4 5.1 5851161	44 12 702 65
5352515049	Experimental and theoretical studies on vibrational spectra of 4-(2-furanylmethyleneamino)antipyrine, 4-benzylideneaminoantipyrine and 4-cinnamilideneaminoantipyrine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 73, 892-901 Effect of proteins on the self-assembly of multiring structural ZrO2 nanodisks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 346, 1-4 Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications, 2009, 11, 115 Influence of multi-walled carbon nanotubes on the cure behavior of epoxy-imidazole system. Carbon, 2009, 47, 1112-1118 Molecular mechanism for formation of polyaniline lamella from a lyotropic liquid crystal: an NMR study. Journal of Physical Chemistry B, 2009, 113, 2725-33 Influence of carboxylic functionalization of MWCNTs on the thermal properties of MWCNTs/DGEBA/EMI-2,4 nanocomposites. Composites Part A: Applied Science and Manufacturing,	4·4 5.1 6851161 10.4 3·4	44 12 702 65

(2008-2009)

	Synthesis and luminescent property of Sr2CeO4 phosphor via EDTA-complexing process. <i>Journal of Alloys and Compounds</i> , 2009 , 474, 287-291	5.7	21
44	Synthesis and characterization of Er2Sn2O7 nanocrystals by salt-assistant combustion method. Journal of Alloys and Compounds, 2009 , 479, 746-749	5.7	20
43	Synthesis of Er2Ti2O7 nanocrystals and its electrochemical hydrogen storage behavior. <i>Journal of Alloys and Compounds</i> , 2009 , 480, L45-L48	5.7	15
42	Controllable synthesis of Bi2S3 hierarchical nanostructures: Effect of addition method on structures. <i>Journal of Alloys and Compounds</i> , 2009 , 481, 520-525	5.7	21
41	Shape-Controlled Synthesis of One-Dimensional MnO2 via a Facile Quick-Precipitation Procedure and its Electrochemical Properties. <i>Crystal Growth and Design</i> , 2009 , 9, 4356-4361	3.5	157
40	Experimental and density functional studies on 4-(4-cyanobenzylideneamino)antipyrine. <i>Molecular Physics</i> , 2009 , 107, 223-235	1.7	99
39	1,4-Bis(4,5-dihydro-1H-imidazol-2-yl)benzene-4-amino-benzene-sulfonic acid-water (1/2/2). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2009 , 65, o2221-2		2
38	Effect of Organic Modification Temperature on the Microstructure of Nanoscale Titania. <i>Wuji Cailiao Xuebao/Journal of Inorganic Materials</i> , 2009 , 24, 438-442	1	
37	1,4-Bis(4,5-dihydro-1H-imidazol-2-yl)benzene-terephthalic acid-water (1/1/4). <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2009 , 65, o2682-3		
36	CuO nanocrystals with controllable shapes grown from solution without any surfactants. <i>Materials Chemistry and Physics</i> , 2008 , 109, 34-38	4.4	46
35	Rapid preparation and characterization of Dy2Zr2O7 nanocrystals. <i>Materials Research Bulletin</i> , 2008 , 43, 2736-2741	5.1	9
35		5.1	9
	, 43, 2736-2741 Synthesis and characteristic of self-assembled diamond/copper nanocomposites. <i>Materials</i>		
34	ynthesis and characteristic of self-assembled diamond/copper nanocomposites. <i>Materials Research Bulletin</i> , 2008 , 43, 2872-2879 Preparation and characterization of pyrochlore La2Zr2O7 nanocrystals by stearic acid method.	5.1 3·3	5
34	Synthesis and characteristic of self-assembled diamond/copper nanocomposites. <i>Materials Research Bulletin</i> , 2008 , 43, 2872-2879 Preparation and characterization of pyrochlore La2Zr2O7 nanocrystals by stearic acid method. <i>Materials Letters</i> , 2008 , 62, 889-891	5.1 3·3	5 53
34 33 32	Synthesis and characteristic of self-assembled diamond/copper nanocomposites. <i>Materials Research Bulletin</i> , 2008 , 43, 2872-2879 Preparation and characterization of pyrochlore La2Zr2O7 nanocrystals by stearic acid method. <i>Materials Letters</i> , 2008 , 62, 889-891 Structure and catalytic activity of nanodiamond/Cu nanocomposites. <i>Materials Letters</i> , 2008 , 62, 1238-	5.1 3.3 -1244 3.3	5 53 31
34 33 32 31	Synthesis and characteristic of self-assembled diamond/copper nanocomposites. <i>Materials Research Bulletin</i> , 2008 , 43, 2872-2879 Preparation and characterization of pyrochlore La2Zr2O7 nanocrystals by stearic acid method. <i>Materials Letters</i> , 2008 , 62, 889-891 Structure and catalytic activity of nanodiamond/Cu nanocomposites. <i>Materials Letters</i> , 2008 , 62, 1238-Preparation and characterization of belt-like Sb2Se3 crystals. <i>Materials Letters</i> , 2008 , 62, 2050-2052	5.1 3.3 -1244 3.3	5 53 31 8

27	Characterization and their photocatalytic properties of Ln2Zr2O7 (Ln=La, Nd, Sm, Dy, Er) nanocrystals by stearic acid method. <i>Solid State Sciences</i> , 2008 , 10, 1379-1383	3.4	43
26	Fabrication of Dy2Ti2O7 nanocrystalline at 700°C and its photocatalytic activity. <i>Journal of Alloys and Compounds</i> , 2008 , 463, 466-470	5.7	14
25	Preparation and characterization of Ln2Zr2O7 (Ln = La and Nd) nanocrystals and their photocatalytic properties. <i>Journal of Alloys and Compounds</i> , 2008 , 465, 280-284	5.7	73
24	GrapheneMetal Particle Nanocomposites. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 19841-19845	3.8	1368
23	Deposition of Co3O4nanoparticles onto exfoliated graphite oxide sheets. <i>Journal of Materials Chemistry</i> , 2008 , 18, 5625		270
22	A Template-free Route to Sb2S3 Crystals with Hollow Olivary Architectures. <i>Crystal Growth and Design</i> , 2008 , 8, 395-398	3.5	26
21	Crystal structure and properties of a Cu(II) complex with the tridentate Schiff-base ligand, paeonol-(2-aminoethylpiperazine). <i>Journal of Coordination Chemistry</i> , 2008 , 61, 3306-3313	1.6	11
20	Study of the effect of precipitant on the high-temperature phase stability of SrO-ZrO2 prepared by n-butanol soft-template method. <i>Phase Transitions</i> , 2008 , 81, 379-385	1.3	
19	The preparation of CdO nanowires from solid-state transformation of a layered metal-organic framework. <i>Journal of Solid State Chemistry</i> , 2008 , 181, 143-149	3.3	49
18	Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate) Template. <i>Nanoscale Research Letters</i> , 2008 , 3, 118-22	5	202
17	The theoretical study on anionic polymerization mechanism of maleimide: Chain propagation by p-I conjugation process. <i>International Journal of Quantum Chemistry</i> , 2008 , 108, 1257-1265	2.1	2
16	Preparation and characterization of Y2Zr2O7 nanocrystals and their photocatalytic properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 194-198	3.1	43
15	Interaction between promethazine hydrochloride and DNA and its application in electrochemical detection of DNA hybridization. <i>Electrochimica Acta</i> , 2008 , 53, 7338-7343	6.7	14
14	Synthesis of amphiphilic graphite oxide. <i>Carbon</i> , 2008 , 46, 386-389	10.4	187
13	Soft-template synthesis of ZrOC2O4 nanocapsule with mesoporous core and microporous shell structure. <i>Microporous and Mesoporous Materials</i> , 2008 , 116, 86-90	5.3	11
12	Ethyl-enediammonium bis-(5-methyl-3-oxo-2-phenyl-2,3-dihydro-pyrazol-1-ide): a hydrogen-bond-supported supra-molecular ionic assembly. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2008 , 64, o1808-9		1
11	Effect of inorganic-organic composite coating on the dispersion of silicon carbide nanoparticles in non-aqueous medium. <i>Nanotechnology</i> , 2007 , 18, 135706	3.4	17
10	Grafting polymerization of polyacetal onto nano-silica surface via bridging isocyanate. <i>Surface and Coatings Technology</i> , 2007 , 201, 4578-4584	4.4	36

LIST OF PUBLICATIONS

9	Synthesis and characterization of the air-water interfacial TiO2/ZrO2 binary oxide film. <i>Journal of Colloid and Interface Science</i> , 2007 , 310, 643-7	9.3	12	
8	Comparison study on the high-temperature phase stability of CaO-doped zirconia made using different precipitants. <i>Materials Characterization</i> , 2007 , 58, 78-81	3.9	11	
7	Synthetic route to the nano-sized titania with high photocatalytic activity using a mixed structure-directing agent. <i>Materials Chemistry and Physics</i> , 2007 , 105, 414-418	4.4	5	
6	Microwave-assisted synthesis and characterization of 3D flower-like Bi2S3 superstructures. <i>Materials Letters</i> , 2007 , 61, 2883-2886	3.3	66	
5	Synthesis of flower-like CuO nanostructures via a simple hydrolysis route. <i>Materials Letters</i> , 2007 , 61, 5236-5238	3.3	58	
4	Preparation and characterization of LaNiO3 nanocrystals. <i>Materials Research Bulletin</i> , 2006 , 41, 1565-	-157501	24	
3	Stearic acid solgel synthesis of ultrafine-layered K2Nd2Ti3O10 at low temperature and its acid-exchanging property. <i>Materials Letters</i> , 2006 , 60, 3100-3103	3.3	7	
2	AirWater interfacial titania film self-assembled by CTAB in the presence of gelatin. <i>Materials Science & Description of the processing of the Science & Description of the Science & Descript</i>	5.3	7	
1	Synthesis, structure and photocatalytic reactivity of layered CdS/H2La2Ti3O10 nanocomposites. <i>Journal of Materials Science</i> , 2006 , 41, 3917-3921	4.3	27	