Sensong An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9143580/publications.pdf

Version: 2024-02-01

471509 477307 1,722 39 17 29 citations h-index g-index papers 41 41 41 1303 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Deep Convolutional Neural Networks to Predict Mutual Coupling Effects in Metasurfaces. Advanced Optical Materials, 2022, 10, 2102113.	7. 3	28
2	Understanding wide field-of-view metalenses. , 2022, , .		0
3	Spatial coherence filtering of normal incidence light through leaky mode engineering. AIP Advances, 2022, 12, 035033.	1.3	0
4	Electrically Tunable and Reconfigurable Topological Edge State Laser. Optics, 2022, 3, 107-116.	1.2	3
5	Fourâ€Channel Kaleidoscopic Metasurfaces Enabled by a Singleâ€Layered Singleâ€Cell Quadâ€Band Metaâ€Atom Advanced Theory and Simulations, 2022, 5, .	` 2.8	4
6	Deep neural network enabled active metasurface embedded design. Nanophotonics, 2022, 11, 4149-4158.	6.0	18
7	Reconfigurable Parfocal Zoom Metalens. Advanced Optical Materials, 2022, 10, .	7.3	18
8	Multiâ€Level Electroâ€Thermal Switching of Optical Phaseâ€Change Materials Using Graphene. Advanced Photonics Research, 2021, 2, 2000034.	3.6	75
9	Multifunctional Metasurface Design with a Generative Adversarial Network. Advanced Optical Materials, 2021, 9, 2001433.	7. 3	78
10	Tunable Metasurface With Dynamic Amplitude and Phase Control. IEEE Access, 2021, 9, 104522-104529.	4.2	12
11	Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications, 2021, 12, 1225.	12.8	221
12	Multifunctional Metasurface Design with a Generative Adversarial Network (Advanced Optical) Tj ETQq0 0 0 rgBT	/9.yerlock	10 Tf 50 30
13	Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology, 2021, 16, 661-666.	31.5	298
14	Large-area optical metasurface fabrication using nanostencil lithography. Optics Letters, 2021, 46, 2324.	3.3	8
15	Electrically-switchable foundry-processed phase change photonic devices. , 2021, , .		5
16	Multichannel Highâ€Efficiency Metasurfaces Based on Triâ€Band Singleâ€Cell Metaâ€Atoms with Independent Complexâ€Amplitude Modulations. Advanced Photonics Research, 2021, 2, 2100088.	3.6	6
17	A Deep Learning Approach to Explore the Mutual Coupling Effects in Metasurfaces., 2021,,.		1
18	Wide Field-of-view Achromatic Metalenses. , 2021, , .		1

#	Article	IF	Citations
19	Design of broadband and wide field-of-view metalenses. Optics Letters, 2021, 46, 5735-5738.	3.3	18
20	A Deep Neural Network Near-Universal Dielectric Meta-Atom Generator. , 2021, , .		0
21	A Broadband High-Efficiency Dipole Array Based on Frequency Selective Surface and Integrated Feeding Structure. IEEE Open Journal of Antennas and Propagation, 2021, 2, 1087-1097.	3.7	6
22	Electrically Reconfigurable Nonvolatile Metasurface based on Phase Change Materials., 2021,,.		0
23	Frequencyâ€Multiplexed Complexâ€Amplitude Metaâ€Devices Based on Bispectral 2â€Bit Coding Metaâ€Atoms. Advanced Optical Materials, 2020, 8, 2000919.	7.3	27
24	Multifunctional Geometric Metasurfaces Based on Triâ€Spectral Metaâ€Atoms with Completely Independent Phase Modulations at Three Wavelengths. Advanced Theory and Simulations, 2020, 3, 2000099.	2.8	13
25	Single-Element Diffraction-Limited Fisheye Metalens. Nano Letters, 2020, 20, 7429-7437.	9.1	104
26	Full control of dual-band vortex beams using a high-efficiency single-layer bi-spectral 2-bit coding metasurface. Optics Express, 2020, 28, 17374.	3.4	42
27	Deep learning modeling approach for metasurfaces with high degrees of freedom. Optics Express, 2020, 28, 31932.	3.4	73
28	Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics, 2020, 9, 3505-3534.	6.0	87
29	A High Performance Terahertz Metalens. , 2019, , .		1
30	Dualâ€Band Terahertz Autoâ€Focusing Airy Beam Based on Singleâ€Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength. Advanced Theory and Simulations, 2019, 2, 1900071.	2.8	23
31	Dual-Band High Efficiency Terahertz Meta-Devices Based on Reflective Geometric Metasurfaces. IEEE Access, 2019, 7, 58131-58138.	4.2	22
32	A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design. ACS Photonics, 2019, 6, 3196-3207.	6.6	212
33	Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature Communications, 2018, 9, 1481.	12.8	126
34	Simultaneous Realization of Anomalous Reflection and Transmission at Two Frequencies using Bi-functional Metasurfaces. Scientific Reports, 2018, 8, 1876.	3.3	76
35	Sandwiched PRS Fabry-Perot Structure for Achieving Compactness and Improved Aperture Efficieny. , 2018, , .		1
36	Ultra-thin, high-efficiency mid-infrared Huygens metasurface optics. , 2018, , .		1

#	Article	IF	CITATIONS
37	Multiwavelength Metasurfaces Based on Singleâ€Layer Dualâ€Wavelength Metaâ€Atoms: Toward Complete Phase and Amplitude Modulations at Two Wavelengths. Advanced Optical Materials, 2017, 5, 1700079.	7.3	103
38	Quad-Wavelength Multi-Focusing Lenses with Dual-Wavelength Meta-Atoms. , 2017, , .		2
39	Generalized Analysis Method for a Class of Novel Wideband Loaded-Stub Phase Shifters. Radioengineering, 2015, 24, 927-931.	0.6	2