
Sensong An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9143580/publications.pdf Version: 2024-02-01

SENSONC AN

#	Article	IF	CITATIONS
1	Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology, 2021, 16, 661-666.	31.5	298
2	Reconfigurable all-dielectric metalens with diffraction-limited performance. Nature Communications, 2021, 12, 1225.	12.8	221
3	A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design. ACS Photonics, 2019, 6, 3196-3207.	6.6	212
4	Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature Communications, 2018, 9, 1481.	12.8	126
5	Single-Element Diffraction-Limited Fisheye Metalens. Nano Letters, 2020, 20, 7429-7437.	9.1	104
6	Multiwavelength Metasurfaces Based on Single‣ayer Dualâ€Wavelength Metaâ€Atoms: Toward Complete Phase and Amplitude Modulations at Two Wavelengths. Advanced Optical Materials, 2017, 5, 1700079.	7.3	103
7	Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics, 2020, 9, 3505-3534.	6.0	87
8	Multifunctional Metasurface Design with a Generative Adversarial Network. Advanced Optical Materials, 2021, 9, 2001433.	7.3	78
9	Simultaneous Realization of Anomalous Reflection and Transmission at Two Frequencies using Bi-functional Metasurfaces. Scientific Reports, 2018, 8, 1876.	3.3	76
10	Multiâ€Level Electroâ€Thermal Switching of Optical Phaseâ€Change Materials Using Graphene. Advanced Photonics Research, 2021, 2, 2000034.	3.6	75
11	Deep learning modeling approach for metasurfaces with high degrees of freedom. Optics Express, 2020, 28, 31932.	3.4	73
12	Full control of dual-band vortex beams using a high-efficiency single-layer bi-spectral 2-bit coding metasurface. Optics Express, 2020, 28, 17374.	3.4	42
13	Deep Convolutional Neural Networks to Predict Mutual Coupling Effects in Metasurfaces. Advanced Optical Materials, 2022, 10, 2102113.	7.3	28
14	Frequencyâ€Multiplexed Complexâ€Amplitude Metaâ€Devices Based on Bispectral 2â€Bit Coding Metaâ€Atoms. Advanced Optical Materials, 2020, 8, 2000919.	7.3	27
15	Dualâ€Band Terahertz Autoâ€Focusing Airy Beam Based on Single‣ayer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength. Advanced Theory and Simulations, 2019, 2, 1900071.	2.8	23
16	Dual-Band High Efficiency Terahertz Meta-Devices Based on Reflective Geometric Metasurfaces. IEEE Access, 2019, 7, 58131-58138.	4.2	22
17	Design of broadband and wide field-of-view metalenses. Optics Letters, 2021, 46, 5735-5738.	3.3	18
18	Deep neural network enabled active metasurface embedded design. Nanophotonics, 2022, 11, 4149-4158.	6.0	18

SENSONG AN

#	Article	IF	CITATIONS
19	Reconfigurable Parfocal Zoom Metalens. Advanced Optical Materials, 2022, 10, .	7.3	18
20	Multifunctional Geometric Metasurfaces Based on Triâ€Spectral Metaâ€Atoms with Completely Independent Phase Modulations at Three Wavelengths. Advanced Theory and Simulations, 2020, 3, 2000099.	2.8	13
21	Tunable Metasurface With Dynamic Amplitude and Phase Control. IEEE Access, 2021, 9, 104522-104529.	4.2	12
22	Large-area optical metasurface fabrication using nanostencil lithography. Optics Letters, 2021, 46, 2324.	3.3	8
23	Multichannel Highâ€Efficiency Metasurfaces Based on Triâ€Band Singleâ€Cell Metaâ€Atoms with Independent Complexâ€Amplitude Modulations. Advanced Photonics Research, 2021, 2, 2100088.	3.6	6
24	A Broadband High-Efficiency Dipole Array Based on Frequency Selective Surface and Integrated Feeding Structure. IEEE Open Journal of Antennas and Propagation, 2021, 2, 1087-1097.	3.7	6
25	Electrically-switchable foundry-processed phase change photonic devices. , 2021, , .		5
26	Fourâ€Channel Kaleidoscopic Metasurfaces Enabled by a Single‣ayered Singleâ€Cell Quadâ€Band Metaâ€Ator Advanced Theory and Simulations, 2022, 5, .	^{n.} 2.8	4
27	Electrically Tunable and Reconfigurable Topological Edge State Laser. Optics, 2022, 3, 107-116.	1.2	3
28	Generalized Analysis Method for a Class of Novel Wideband Loaded-Stub Phase Shifters. Radioengineering, 2015, 24, 927-931.	0.6	2
29	Quad-Wavelength Multi-Focusing Lenses with Dual-Wavelength Meta-Atoms. , 2017, , .		2
30	Sandwiched PRS Fabry-Perot Structure for Achieving Compactness and Improved Aperture Efficieny. , 2018, , .		1
31	Ultra-thin, high-efficiency mid-infrared Huygens metasurface optics. , 2018, , .		1
32	A High Performance Terahertz Metalens. , 2019, , .		1
33	Multifunctional Metasurface Design with a Generative Adversarial Network (Advanced Optical) Tj ETQq1 1 0.784	314 rgBT 7.3	-/Oyerlock 10
34	A Deep Learning Approach to Explore the Mutual Coupling Effects in Metasurfaces. , 2021, , .		1
35	Wide Field-of-view Achromatic Metalenses. , 2021, , .		1
36	A Deep Neural Network Near-Universal Dielectric Meta-Atom Generator. , 2021, , .		0

#	Article	IF	CITATIONS
37	Electrically Reconfigurable Nonvolatile Metasurface based on Phase Change Materials. , 2021, , .		0
38	Understanding wide field-of-view metalenses. , 2022, , .		0
39	Spatial coherence filtering of normal incidence light through leaky mode engineering. AIP Advances, 2022, 12, 035033.	1.3	0