David M Frazer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9143216/publications.pdf

Version: 2024-02-01

71 4,866 33
papers citations h-index

33 66
h-index g-index

73 73 all docs docs citations

73 times ranked 4303 citing authors

#	Article	IF	CITATIONS
1	The biology of mammalian multi-copper ferroxidases. BioMetals, 2023, 36, 263-281.	4.1	17
2	A Novel Ferritin-Core Analog Is a Safe and Effective Alternative to Oral Ferrous Iron for Treating Iron Deficiency during Pregnancy in Mice. Journal of Nutrition, 2022, 152, 714-722.	2.9	8
3	Supplementation with Sucrosomial \hat{A}^{\otimes} iron leads to favourable changes in the intestinal microbiome when compared to ferrous sulfate in mice. BioMetals, 2022, 35, 27-38.	4.1	9
4	Iron accumulation is associated with periodontal destruction in a mouse model of HFEâ€related haemochromatosis. Journal of Periodontal Research, 2022, 57, 294-304.	2.7	8
5	Disruption of Hfe leads to skeletal muscle iron loading and reduction of hemoproteins involved in oxidative metabolism in a mouse model of hereditary hemochromatosis. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130082.	2.4	2
6	The Placental Ferroxidase Zyklopen Is Not Essential for Iron Transport to the Fetus in Mice. Journal of Nutrition, 2021, 151, 2541-2550.	2.9	7
7	Ironing Out the Effects of Overweight and Obesity on Hepcidin Production during Pregnancy. Journal of Nutrition, 2021, 151, 2087-2088.	2.9	1
8	Increased susceptibility of cystic fibrosis airway epithelial cells to ferroptosis. Biological Research, 2021, 54, 38.	3.4	13
9	Investigating the Links between Lower Iron Status in Pregnancy and Respiratory Disease in Offspring Using Murine Models. Nutrients, 2021, 13, 4461.	4.1	2
	using Multine Models. Natherits, 2021, 15, 1101.		
10	Iron; Intestinal Absorption. , 2020, , 301-311.		O
		9.1	92
10	Iron; Intestinal Absorption. , 2020, , 301-311. Dihydrolipoic Acid–Gold Nanoclusters Regulate Microglial Polarization and Have the Potential To	9.1	
10	Iron; Intestinal Absorption., 2020, , 301-311. Dihydrolipoic Acid–Gold Nanoclusters Regulate Microglial Polarization and Have the Potential To Alter Neurogenesis. Nano Letters, 2020, 20, 478-495. Mice overexpressing hepcidin suggest ferroportin does not play a major role in Mn homeostasis.		92
10 11 12	Iron; Intestinal Absorption., 2020, , 301-311. Dihydrolipoic Acid–Gold Nanoclusters Regulate Microglial Polarization and Have the Potential To Alter Neurogenesis. Nano Letters, 2020, 20, 478-495. Mice overexpressing hepcidin suggest ferroportin does not play a major role in Mn homeostasis. Metallomics, 2019, 11, 959-967.	2.4	92 7
10 11 12 13	Iron; Intestinal Absorption., 2020, , 301-311. Dihydrolipoic Acid–Gold Nanoclusters Regulate Microglial Polarization and Have the Potential To Alter Neurogenesis. Nano Letters, 2020, 20, 478-495. Mice overexpressing hepcidin suggest ferroportin does not play a major role in Mn homeostasis. Metallomics, 2019, 11, 959-967. Dietary iron absorption during early postnatal life. BioMetals, 2019, 32, 385-393. Iron supplementation has minor effects on gut microbiota composition in overweight and obese	2.4	92 7 12
10 11 12 13	Iron; Intestinal Absorption. , 2020, , 301-311. Dihydrolipoic Acid–Gold Nanoclusters Regulate Microglial Polarization and Have the Potential To Alter Neurogenesis. Nano Letters, 2020, 20, 478-495. Mice overexpressing hepcidin suggest ferroportin does not play a major role in Mn homeostasis. Metallomics, 2019, 11, 959-967. Dietary iron absorption during early postnatal life. BioMetals, 2019, 32, 385-393. Iron supplementation has minor effects on gut microbiota composition in overweight and obese women in early pregnancy. British Journal of Nutrition, 2018, 120, 283-289. Polymeric Nanoparticles Enhance the Ability of Deferoxamine To Deplete Hepatic and Systemic Iron.	2.4 4.1 2.3	92 7 12 20
10 11 12 13 14	Iron; Intestinal Absorption. , 2020, , 301-311. Dihydrolipoic Acid–Gold Nanoclusters Regulate Microglial Polarization and Have the Potential To Alter Neurogenesis. Nano Letters, 2020, 20, 478-495. Mice overexpressing hepcidin suggest ferroportin does not play a major role in Mn homeostasis. Metallomics, 2019, 11, 959-967. Dietary iron absorption during early postnatal life. BioMetals, 2019, 32, 385-393. Iron supplementation has minor effects on gut microbiota composition in overweight and obese women in early pregnancy. British Journal of Nutrition, 2018, 120, 283-289. Polymeric Nanoparticles Enhance the Ability of Deferoxamine To Deplete Hepatic and Systemic Iron. Nano Letters, 2018, 18, 5782-5790. Severe Iron Metabolism Defects in Mice With Double Knockout of the Multicopper Ferroxidases Hephaestin and Ceruloplasmin. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6,	2.4 4.1 2.3	92 7 12 20 27

#	Article	IF	CITATIONS
19	Is there a better way to set population iron recommendations?. American Journal of Clinical Nutrition, 2017, 105, 1255-1256.	4.7	1
20	Ferroportin Is Essential for Iron Absorption During Suckling,ÂButÂls Hyporesponsive to the Regulatory HormoneÂHepcidin. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 410-421.	4.5	24
21	Current understanding of iron homeostasis. American Journal of Clinical Nutrition, 2017, 106, 1559S-1566S.	4.7	393
22	Hepcidin and the Hormonal Control of Iron Homeostasis. , 2017, , 175-186.		1
23	Characterization of Putative Erythroid Regulators of Hepcidin in Mouse Models of Anemia. PLoS ONE, 2017, 12, e0171054.	2.5	17
24	Iron homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 276-281.	2.5	43
25	Hepcidin independent iron recycling in a mouse model of βâ€ŧhalassaemia intermedia. British Journal of Haematology, 2016, 175, 308-317.	2.5	5
26	Dietary iron depletion at weaning imprints low microbiome diversity and this is not recovered with oral nano Fe(III). MicrobiologyOpen, 2015, 4, 12-27.	3.0	48
27	The Multicopper Ferroxidase Hephaestin Enhances Intestinal Iron Absorption in Mice. PLoS ONE, 2014, 9, e98792.	2.5	70
28	Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1877-1886.	3.3	120
29	Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. FASEB Journal, 2014, 28, 3671-3678.	0.5	42
30	The regulation of iron transport. BioFactors, 2014, 40, 206-214.	5.4	148
31	Transfusion suppresses erythropoiesis and increases hepcidin in adult patients with \hat{l}^2 -thalassemia major: a longitudinal study. Blood, 2013, 122, 124-133.	1.4	126
32	Sustained expression of heme oxygenase-1 alters iron homeostasis in nonerythroid cells. Free Radical Biology and Medicine, 2012, 53, 366-374.	2.9	21
33	Stimulated erythropoiesis with secondary iron loading leads to a decrease in hepcidin despite an increase in bone morphogenetic protein 6 expression. British Journal of Haematology, 2012, 157, 615-626.	2.5	39
34	Reduced Expression of Ferroportin-1 Mediates Hyporesponsiveness of Suckling Rats to Stimuli That Reduce Iron Absorption. Gastroenterology, 2011, 141, 300-309.	1.3	24
35	Intestinal iron absorption during suckling in mammals. BioMetals, 2011, 24, 567-574.	4.1	16
36	Severe iron deficiency blunts the response of the iron regulatory gene Hamp and pro-inflammatory cytokines to lipopolysaccharide. Haematologica, 2010, 95, 1660-1667.	3.5	50

#	Article	IF	CITATIONS
37	Molecular basis of iron-loading disorders. Expert Reviews in Molecular Medicine, 2010, 12, e36.	3.9	42
38	Hepcidin compared with prohepcidin: an absorbing story. American Journal of Clinical Nutrition, 2009, 89, 475-476.	4.7	24
39	Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology, 2009, 50, 1992-2000.	7.3	180
40	Iron absorption and metabolism. Current Opinion in Gastroenterology, 2009, 25, 129-135.	2.3	151
41	How much iron is too much?. Expert Review of Gastroenterology and Hepatology, 2008, 2, 287-290.	3.0	3
42	Elevated iron absorption in the neonatal rat reflects high expression of iron transport genes in the distal alimentary tract. American Journal of Physiology - Renal Physiology, 2007, 293, G525-G531.	3.4	29
43	Regulation of systemic iron homeostasis: how the body responds to changes in iron demand. BioMetals, 2007, 20, 665-74.	4.1	64
44	Iron metabolism in the hemoglobin-deficit mouse: correlation of diferric transferrin with hepcidin expression. Blood, 2006, 107, 1659-1664.	1.4	51
45	Iron metabolism meets signal transduction. Nature Genetics, 2006, 38, 503-504.	21.4	36
46	The role of duodenal cytochrome b in intestinal iron absorption remains unclear. Blood, 2005, 106, 4413-4414.	1.4	19
47	Systemic Regulation of Intestinal Iron Absorption. IUBMB Life, 2005, 57, 499-503.		0.5
		3.4	25
48	Recent advances in intestinal iron transport. Current Gastroenterology Reports, 2005, 7, 365-372.	2.5	21
49	Recent advances in intestinal iron transport. Current Gastroenterology Reports, 2005, 7, 365-372. Mechanisms of Haem and Non-Haem Iron Absorption: Lessons from Inherited Disorders of Iron Metabolism. BioMetals, 2005, 18, 339-348.		
	Mechanisms of Haem and Non-Haem Iron Absorption: Lessons from Inherited Disorders of Iron	2.5	21
49	Mechanisms of Haem and Non-Haem Iron Absorption: Lessons from Inherited Disorders of Iron Metabolism. BioMetals, 2005, 18, 339-348.	2.5 4.1	21 59
49 50	Mechanisms of Haem and Non-Haem Iron Absorption: Lessons from Inherited Disorders of Iron Metabolism. BioMetals, 2005, 18, 339-348. Hepatic Iron Metabolism. Seminars in Liver Disease, 2005, 25, 420-432. Iron Imports. I. Intestinal iron absorption and its regulation. American Journal of Physiology - Renal	2.5 4.1 3.6	21 59 112
49 50 51	Mechanisms of Haem and Non-Haem Iron Absorption: Lessons from Inherited Disorders of Iron Metabolism. BioMetals, 2005, 18, 339-348. Hepatic Iron Metabolism. Seminars in Liver Disease, 2005, 25, 420-432. Iron Imports. I. Intestinal iron absorption and its regulation. American Journal of Physiology - Renal Physiology, 2005, 289, G631-G635.	2.5 4.1 3.6	21 59 112 91

#	Article	IF	Citations
55	Delayed hepcidin response explains the lag period in iron absorption following a stimulus to increase erythropoiesis. Gut, 2004, 53, 1509-1515.	12.1	87
56	Increased hepcidin expression and hypoferraemia associated with an acute phase response are not affected by inactivation of HFE. British Journal of Haematology, 2004, 126, 434-436.	2.5	60
57	Increased duodenal expression of divalent metal transporter 1 and iron-regulated gene 1 in cirrhosis. Hepatology, 2004, 39, 492-499.	7.3	16
58	Disrupted hepcidin regulation in HFE -associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet, The, 2003, 361, 669-673.	13.7	568
59	The orchestration of body iron intake: how and where do enterocytes receive their cues?. Blood Cells, Molecules, and Diseases, 2003, 30, 288-297.	1.4	180
60	A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut, 2003, 52, 340-346.	12.1	160
61	Duodenal expression of iron transport molecules in untreated haemochromatosis subjects. Gut, 2003, 52, 953-959.	12.1	53
62	Relationship between intestinal iron-transporter expression, hepatic hepcidin levels and the control of iron absorption. Biochemical Society Transactions, 2002, 30, 724-726.	3.4	92
63	The Ceruloplasmin Homolog Hephaestin and the Control of Intestinal Iron Absorption. Blood Cells, Molecules, and Diseases, 2002, 29, 367-375.	1.4	90
64	Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology, 2002, 123, 835-844.	1.3	308
65	The Expression and Regulation of the Iron Transport Molecules Hephaestin and IREG1. Cell Biochemistry and Biophysics, 2002, 36, 137-146.	1.8	32
66	Cloning and gastrointestinal expression of rat hephaestin: relationship to other iron transport proteins. American Journal of Physiology - Renal Physiology, 2001, 281, G931-G939.	3.4	111
67	Intestinal Iron Transport and its Regulation. Hematology, 2001, 6, 193-203.	1.5	9
68	The relative importance of luminal and systemic signals in the control of intestinal iron absorption. Gastroenterology, 2001, 120, A678-A679.	1.3	0
69	Intestinal iron transporter expression in liver disease. Gastroenterology, 2001, 120, A678-A678.	1.3	0
70	Subcellular localization and differentiation-associated expression of hephaestin: A protein required for intestinal iron absorption. Gastroenterology, 2000, 118, A661.	1.3	1
71	Distribution and regulation of iron transport genes in the rat gastrointestinal tract: Implications for the control of iron absorption. Gastroenterology, 2000, 118, A69.	1.3	0