
David M Frazer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9143216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of an Intestinal Heme Transporter. Cell, 2005, 122, 789-801.	28.9	628
2	Disrupted hepcidin regulation in HFE -associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet, The, 2003, 361, 669-673.	13.7	568
3	Current understanding of iron homeostasis. American Journal of Clinical Nutrition, 2017, 106, 1559S-1566S.	4.7	393
4	Hepcidin expression inversely correlates with the expression of duodenal iron transporters and iron absorption in rats. Gastroenterology, 2002, 123, 835-844.	1.3	308
5	The orchestration of body iron intake: how and where do enterocytes receive their cues?. Blood Cells, Molecules, and Diseases, 2003, 30, 288-297.	1.4	180
6	Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology, 2009, 50, 1992-2000.	7.3	180
7	A rapid decrease in the expression of DMT1 and Dcytb but not Ireg1 or hephaestin explains the mucosal block phenomenon of iron absorption. Gut, 2003, 52, 340-346.	12.1	160
8	Iron absorption and metabolism. Current Opinion in Gastroenterology, 2009, 25, 129-135.	2.3	151
9	The regulation of iron transport. BioFactors, 2014, 40, 206-214.	5.4	148
10	Transfusion suppresses erythropoiesis and increases hepcidin in adult patients with β-thalassemia major: a longitudinal study. Blood, 2013, 122, 124-133.	1.4	126
11	Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1877-1886.	3.3	120
12	Hepatic Iron Metabolism. Seminars in Liver Disease, 2005, 25, 420-432.	3.6	112
13	Cloning and gastrointestinal expression of rat hephaestin: relationship to other iron transport proteins. American Journal of Physiology - Renal Physiology, 2001, 281, G931-G939.	3.4	111
14	Relationship between intestinal iron-transporter expression, hepatic hepcidin levels and the control of iron absorption. Biochemical Society Transactions, 2002, 30, 724-726.	3.4	92
15	Dihydrolipoic Acid–Gold Nanoclusters Regulate Microglial Polarization and Have the Potential To Alter Neurogenesis. Nano Letters, 2020, 20, 478-495.	9.1	92
16	Iron Imports. I. Intestinal iron absorption and its regulation. American Journal of Physiology - Renal Physiology, 2005, 289, G631-G635.	3.4	91
17	The Ceruloplasmin Homolog Hephaestin and the Control of Intestinal Iron Absorption. Blood Cells, Molecules, and Diseases, 2002, 29, 367-375.	1.4	90
18	Delayed hepcidin response explains the lag period in iron absorption following a stimulus to increase erythropoiesis. Gut. 2004, 53, 1509-1515.	12.1	87

DAVID M FRAZER

#	Article	IF	CITATIONS
19	Changes in the expression of intestinal iron transport and hepatic regulatory molecules explain the enhanced iron absorption associated with pregnancy in the rat. Gut, 2004, 53, 655-660.	12.1	77
20	The Multicopper Ferroxidase Hephaestin Enhances Intestinal Iron Absorption in Mice. PLoS ONE, 2014, 9, e98792.	2.5	70
21	Regulation of systemic iron homeostasis: how the body responds to changes in iron demand. BioMetals, 2007, 20, 665-74.	4.1	64
22	Increased hepcidin expression and hypoferraemia associated with an acute phase response are not affected by inactivation of HFE. British Journal of Haematology, 2004, 126, 434-436.	2.5	60
23	Mechanisms of Haem and Non-Haem Iron Absorption: Lessons from Inherited Disorders of Iron Metabolism. BioMetals, 2005, 18, 339-348.	4.1	59
24	Duodenal expression of iron transport molecules in untreated haemochromatosis subjects. Gut, 2003, 52, 953-959.	12.1	53
25	Iron metabolism in the hemoglobin-deficit mouse: correlation of diferric transferrin with hepcidin expression. Blood, 2006, 107, 1659-1664.	1.4	51
26	Severe iron deficiency blunts the response of the iron regulatory gene Hamp and pro-inflammatory cytokines to lipopolysaccharide. Haematologica, 2010, 95, 1660-1667.	3.5	50
27	Dietary iron depletion at weaning imprints low microbiome diversity and this is not recovered with oral nano Fe(III). MicrobiologyOpen, 2015, 4, 12-27.	3.0	48
28	Iron homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2016, 19, 276-281.	2.5	43
29	Molecular basis of iron-loading disorders. Expert Reviews in Molecular Medicine, 2010, 12, e36.	3.9	42
30	Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. FASEB Journal, 2014, 28, 3671-3678.	0.5	42
31	Stimulated erythropoiesis with secondary iron loading leads to a decrease in hepcidin despite an increase in bone morphogenetic protein 6 expression. British Journal of Haematology, 2012, 157, 615-626.	2.5	39
32	Iron metabolism meets signal transduction. Nature Genetics, 2006, 38, 503-504.	21.4	36
33	Severe Iron Metabolism Defects in Mice With Double Knockout of the Multicopper Ferroxidases Hephaestin and Ceruloplasmin. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 405-427.	4.5	36
34	The Expression and Regulation of the Iron Transport Molecules Hephaestin and IREG1. Cell Biochemistry and Biophysics, 2002, 36, 137-146.	1.8	32
35	Circulating iron levels influence the regulation of hepcidin following stimulated erythropoiesis. Haematologica, 2018, 103, 1616-1626.	3.5	30
36	Elevated iron absorption in the neonatal rat reflects high expression of iron transport genes in the distal alimentary tract. American Journal of Physiology - Renal Physiology, 2007, 293, G525-G531.	3.4	29

DAVID M FRAZER

#	Article	IF	CITATIONS
37	Polymeric Nanoparticles Enhance the Ability of Deferoxamine To Deplete Hepatic and Systemic Iron. Nano Letters, 2018, 18, 5782-5790.	9.1	27
38	Systemic Regulation of Intestinal Iron Absorption. IUBMB Life, 2005, 57, 499-503.	3.4	25
39	Hepcidin compared with prohepcidin: an absorbing story. American Journal of Clinical Nutrition, 2009, 89, 475-476.	4.7	24
40	Reduced Expression of Ferroportin-1 Mediates Hyporesponsiveness of Suckling Rats to Stimuli That Reduce Iron Absorption. Gastroenterology, 2011, 141, 300-309.	1.3	24
41	Ferroportin Is Essential for Iron Absorption During Suckling,ÂButÂIs Hyporesponsive to the Regulatory HormoneÂHepcidin. Cellular and Molecular Gastroenterology and Hepatology, 2017, 3, 410-421.	4.5	24
42	Recent advances in intestinal iron transport. Current Gastroenterology Reports, 2005, 7, 365-372.	2.5	21
43	Sustained expression of heme oxygenase-1 alters iron homeostasis in nonerythroid cells. Free Radical Biology and Medicine, 2012, 53, 366-374.	2.9	21
44	Iron supplementation has minor effects on gut microbiota composition in overweight and obese women in early pregnancy. British Journal of Nutrition, 2018, 120, 283-289.	2.3	20
45	The role of duodenal cytochrome b in intestinal iron absorption remains unclear. Blood, 2005, 106, 4413-4414.	1.4	19
46	Characterization of Putative Erythroid Regulators of Hepcidin in Mouse Models of Anemia. PLoS ONE, 2017, 12, e0171054.	2.5	17
47	The biology of mammalian multi-copper ferroxidases. BioMetals, 2023, 36, 263-281.	4.1	17
48	Increased duodenal expression of divalent metal transporter 1 and iron-regulated gene 1 in cirrhosis. Hepatology, 2004, 39, 492-499.	7.3	16
49	Intestinal iron absorption during suckling in mammals. BioMetals, 2011, 24, 567-574.	4.1	16
50	Increased susceptibility of cystic fibrosis airway epithelial cells to ferroptosis. Biological Research, 2021, 54, 38.	3.4	13
51	Dietary iron absorption during early postnatal life. BioMetals, 2019, 32, 385-393.	4.1	12
52	Intestinal Iron Transport and its Regulation. Hematology, 2001, 6, 193-203.	1.5	9
53	Supplementation with Sucrosomial \hat{A}^{\oplus} iron leads to favourable changes in the intestinal microbiome when compared to ferrous sulfate in mice. BioMetals, 2022, 35, 27-38.	4.1	9
54	A Novel Ferritin-Core Analog Is a Safe and Effective Alternative to Oral Ferrous Iron for Treating Iron Deficiency during Pregnancy in Mice. Journal of Nutrition, 2022, 152, 714-722.	2.9	8

DAVID M FRAZER

#	Article	IF	CITATIONS
55	Iron accumulation is associated with periodontal destruction in a mouse model of HFEâ€related haemochromatosis. Journal of Periodontal Research, 2022, 57, 294-304.	2.7	8
56	Mice overexpressing hepcidin suggest ferroportin does not play a major role in Mn homeostasis. Metallomics, 2019, 11, 959-967.	2.4	7
57	The Placental Ferroxidase Zyklopen Is Not Essential for Iron Transport to the Fetus in Mice. Journal of Nutrition, 2021, 151, 2541-2550.	2.9	7
58	Food deprivation increases hepatic hepcidin expression and can overcome the effect of Hfe deletion in male mice. FASEB Journal, 2018, 32, 6079-6088.	0.5	6
59	Hepcidin independent iron recycling in a mouse model of βâ€ŧhalassaemia intermedia. British Journal of Haematology, 2016, 175, 308-317.	2.5	5
60	How much iron is too much?. Expert Review of Gastroenterology and Hepatology, 2008, 2, 287-290.	3.0	3
61	Disruption of Hfe leads to skeletal muscle iron loading and reduction of hemoproteins involved in oxidative metabolism in a mouse model of hereditary hemochromatosis. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130082.	2.4	2
62	Investigating the Links between Lower Iron Status in Pregnancy and Respiratory Disease in Offspring Using Murine Models. Nutrients, 2021, 13, 4461.	4.1	2
63	Subcellular localization and differentiation-associated expression of hephaestin: A protein required for intestinal iron absorption. Gastroenterology, 2000, 118, A661.	1.3	1
64	Is there a better way to set population iron recommendations?. American Journal of Clinical Nutrition, 2017, 105, 1255-1256.	4.7	1
65	Hepcidin and the Hormonal Control of Iron Homeostasis. , 2017, , 175-186.		1
66	Ironing Out the Effects of Overweight and Obesity on Hepcidin Production during Pregnancy. Journal of Nutrition, 2021, 151, 2087-2088.	2.9	1
67	Distribution and regulation of iron transport genes in the rat gastrointestinal tract: Implications for the control of iron absorption. Gastroenterology, 2000, 118, A69.	1.3	0
68	Iron; Intestinal Absorption. , 2020, , 301-311.		0
69	The relative importance of luminal and systemic signals in the control of intestinal iron absorption. Gastroenterology, 2001, 120, A678-A679.	1.3	0
70	Intestinal iron transporter expression in liver disease. Gastroenterology, 2001, 120, A678-A678.	1.3	0
71	Expression of the Iron Regulatory Peptide Hepcidin Is Reduced in Patients with Chronic Liver Disease Blood, 2005, 106, 3591-3591.	1.4	0