
## Luis Fernandez Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9143014/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Modelling the control strategies against dengue in Singapore. Epidemiology and Infection, 2008, 136, 309-319.                                                                               | 2.1 | 138       |
| 2  | The risk of yellow fever in a dengue-infested area. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2001, 95, 370-374.                                                  | 1.8 | 118       |
| 3  | Threshold Conditions for a Non-Autonomous Epidemic System Describing the Population Dynamics of Dengue. Bulletin of Mathematical Biology, 2006, 68, 2263-2282.                              | 1.9 | 104       |
| 4  | Dengue and the risk of urban yellow fever reintroduction in São Paulo State, Brazil. Revista De Saude<br>Publica, 2003, 37, 477-484.                                                        | 1.7 | 54        |
| 5  | The 1918 influenza A epidemic in the city of São Paulo, Brazil. Medical Hypotheses, 2007, 68, 442-445.                                                                                      | 1.5 | 52        |
| 6  | Threshold conditions for infection persistence in complex host-vectors interactions. Comptes Rendus - Biologies, 2002, 325, 1073-1084.                                                      | 0.2 | 49        |
| 7  | Forecasting versus projection models in epidemiology: The case of the SARS epidemics. Medical<br>Hypotheses, 2005, 65, 17-22.                                                               | 1.5 | 49        |
| 8  | Modeling Importations and Exportations of Infectious Diseases via Travelers. Bulletin of<br>Mathematical Biology, 2016, 78, 185-209.                                                        | 1.9 | 46        |
| 9  | A Comparative Analysis of the Relative Efficacy of Vector-Control Strategies Against Dengue Fever.<br>Bulletin of Mathematical Biology, 2014, 76, 697-717.                                  | 1.9 | 45        |
| 10 | Modelling the Dynamics of Leishmaniasis Considering Human, Animal Host and Vector Populations.<br>Journal of Biological Systems, 1998, 06, 337-356.                                         | 1.4 | 44        |
| 11 | Potential for international spread of wild poliovirus via travelers. BMC Medicine, 2015, 13, 133.                                                                                           | 5.5 | 44        |
| 12 | Modeling the impact of global warming on vector-borne infections. Physics of Life Reviews, 2011, 8, 169-99.                                                                                 | 2.8 | 43        |
| 13 | Modelling heterogeneities in individual frailties in epidemic models. Mathematical and Computer<br>Modelling, 1999, 30, 97-115.                                                             | 2.0 | 38        |
| 14 | Yellow fever vaccination: How much is enough?. Vaccine, 2005, 23, 3908-3914.                                                                                                                | 3.8 | 38        |
| 15 | The impact of imperfect vaccines on the evolution of HIV virulence. Medical Hypotheses, 2006, 66, 907-911.                                                                                  | 1.5 | 35        |
| 16 | An approximate threshold condition for non-autonomous system: An application to a vector-borne infection. Mathematics and Computers in Simulation, 2005, 70, 149-158.                       | 4.4 | 34        |
| 17 | Vaccination against rubella: Analysis of the temporal evolution of the age-dependent force of infection and the effects of different contact patterns. Physical Review E, 2003, 67, 051907. | 2.1 | 33        |
| 18 | The risk of dengue for non-immune foreign visitors to the 2016 summer olympic games in Rio de<br>Janeiro, Brazil. BMC Infectious Diseases, 2016, 16, 186.                                   | 2.9 | 31        |

Luis Fernandez Lopez

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Potential exposure to Zika virus for foreign tourists during the 2016 Carnival and Olympic Games in<br>Rio de Janeiro, Brazil. Epidemiology and Infection, 2016, 144, 1904-1906.                                                   | 2.1 | 29        |
| 20 | Age and regional differences in clinical presentation and risk of hospitalization for dengue in Brazil, 2000-2014. Clinics, 2016, 71, 455-463.                                                                                     | 1.5 | 29        |
| 21 | Risk of symptomatic dengue for foreign visitors to the 2014 FIFA World Cup in Brazil. Memorias Do<br>Instituto Oswaldo Cruz, 2014, 109, 394-397.                                                                                   | 1.6 | 27        |
| 22 | The Eyam plague revisited: did the village isolation change transmission from fleas to pulmonary?.<br>Medical Hypotheses, 2004, 63, 911-915.                                                                                       | 1.5 | 25        |
| 23 | Basic aspects of the pathogenesis and prevention of nonâ€melanoma skin cancer in solid organ<br>transplant recipients: a review. International Journal of Dermatology, 2017, 56, 370-378.                                          | 1.0 | 23        |
| 24 | Modelling the Natural History of HIV Infection in Individuals and its Epidemiological Implications.<br>Bulletin of Mathematical Biology, 2001, 63, 1041-1062.                                                                      | 1.9 | 20        |
| 25 | Estimating the size of Aedes aegypti populations from dengue incidence data: Implications for the risk of yellow fever outbreaks. Infectious Disease Modelling, 2017, 2, 441-454.                                                  | 1.9 | 18        |
| 26 | Benefits brought by the use of OpenFlow/SDN on the AmLight intercontinental research and education network. , 2015, , .                                                                                                            |     | 17        |
| 27 | The risk of urban yellow fever resurgence in <i>Aedes</i> -infested American cities. Epidemiology and Infection, 2018, 146, 1219-1225.                                                                                             | 2.1 | 17        |
| 28 | A Mixed Ectoparasite–Microparasite Model for Bat-Transmitted Rabies. Theoretical Population<br>Biology, 2001, 60, 265-279.                                                                                                         | 1.1 | 15        |
| 29 | Modeling the impact of imperfect HIV vaccines on the incidence of the infection. Mathematical and Computer Modelling, 2001, 34, 345-351.                                                                                           | 2.0 | 15        |
| 30 | Magnitude and frequency variations of vector-borne infection outbreaks using the Ross–Macdonald<br>model: explaining and predicting outbreaks of dengue fever. Epidemiology and Infection, 2016, 144,<br>3435-3450.                | 2.1 | 15        |
| 31 | Pregnancy and Kidney Transplantation, Triple Hazard? Current Concepts and Algorithm for Approach of Preconception and Perinatal Care of the Patient With Kidney Transplantation. Transplantation Proceedings, 2014, 46, 3027-3031. | 0.6 | 12        |
| 32 | Interpretations and pitfalls in modelling vector-transmitted infections. Epidemiology and Infection, 2015, 143, 1803-1815.                                                                                                         | 2.1 | 10        |
| 33 | Modelling the spread of infections when the contact rate among individuals is short ranged:<br>Propagation of epidemic waves. Mathematical and Computer Modelling, 1999, 29, 55-69.                                                | 2.0 | 9         |
| 34 | On the uniqueness of the positive solution of an integral equation which appears in epidemiological models. Journal of Mathematical Biology, 2000, 40, 199-228.                                                                    | 1.9 | 9         |
| 35 | Estimating the Size of the HCV Infection Prevalence: A Modeling Approach Using the Incidence of Cases<br>Reported to an Official Notification System. Bulletin of Mathematical Biology, 2016, 78, 970-990.                         | 1.9 | 9         |
| 36 | Estimating the prevalence of infectious diseases from under-reported age-dependent compulsorily notification databases. Theoretical Biology and Medical Modelling, 2017, 14, 23.                                                   | 2.1 | 9         |

Luis Fernandez Lopez

| #  | Article                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A public health risk assessment for yellow fever vaccination: a model exemplified by an outbreak in the state of São Paulo, Brazil. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 230-234.                                                                             | 1.6 | 7         |
| 38 | In VivoHIV-1 Hypermutation and Viral Loads Among Antiretroviral-Naive Brazilian Patients. AIDS<br>Research and Human Retroviruses, 2014, 30, 867-880.                                                                                                                   | 1.1 | 6         |
| 39 | A schematic age-structured compartment model of the impact of antiretroviral therapy on HIV incidence and prevalence. Mathematics and Computers in Simulation, 2006, 71, 131-148.                                                                                       | 4.4 | 5         |
| 40 | Which phase of the natural history of HIV infection is more transmissible?. International Journal of STD and AIDS, 2002, 13, 430-431.                                                                                                                                   | 1.1 | 4         |
| 41 | Relationship between connectivity and academic productivity. Scientometrics, 2012, 93, 265-278.                                                                                                                                                                         | 3.0 | 4         |
| 42 | Maximum Equilibrium Prevalence of Mosquito-Borne Microparasite Infections in Humans.<br>Computational and Mathematical Methods in Medicine, 2013, 2013, 1-7.                                                                                                            | 1.3 | 4         |
| 43 | Motion of articulated bodies: An application of gauge invariance in classical Lagrangian mechanics.<br>American Journal of Physics, 1997, 65, 528-536.                                                                                                                  | 0.7 | 3         |
| 44 | A mathematical model for optimizing the indications of liver transplantation in patients with hepatocellular carcinoma. Theoretical Biology and Medical Modelling, 2013, 10, 60.                                                                                        | 2.1 | 2         |
| 45 | A MODEL-INDEPENDENT ANALYSIS OF THE DEMOGRAPHIC IMPACT OF HIV/AIDS IN THE STATE OF SÃO PAULO, BRAZIL. Journal of Biological Systems, 2001, 09, 255-267.                                                                                                                 | 1.4 | 1         |
| 46 | Comment on "The distribution of composite measurements: How to be certain of the uncertainties in<br>what we measure,―by M. P. Silverman, W. Strange, and T. C. Lipscombe [Am. J. Phys. 72 (8), 1068–1081<br>(2004)]. American Journal of Physics, 2004, 72, 1530-1530. | 0.7 | 0         |
| 47 | Analysis of protease treatment-associated mutations in a group of HIV-1 subtype F infected individuals with two sequences obtained in different time points. Retrovirology, 2010, 7, .                                                                                  | 2.0 | 0         |
| 48 | Entomological repercussions of increasing environmental temperatures. Physics of Life Reviews, 2011,                                                                                                                                                                    | 2.8 | 0         |
| 49 | MODELING PLAGUE DYNAMICS: ENDEMIC STATES, OUTBREAKS AND EPIDEMIC WAVES. , 2006, , .                                                                                                                                                                                     |     | 0         |
| 50 | THE SPREAD OF THE HIV INFECTION ON IMMUNE SYSTEM: IMPLICATIONS ON CELL POPULATIONS AND R <sub>0</sub> EPIDEMIC ESTIMATE. , 2010, , .                                                                                                                                    |     | 0         |
| 51 | Paraconsistents artificial neural networks applied to the study of mutational patterns of the F<br>subtype of the viral strains of HIV-1 to antiretroviral therapy. Anais Da Academia Brasileira De Ciencias,<br>2016, 88, 323-34.                                      | 0.8 | 0         |

4