Jyoti Mittal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/914292/publications.pdf

Version: 2024-02-01

44 8,491 35 42
papers citations h-index g-index

45 45 45 6358 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A novel, eco-friendly bio-nanocomposite (Alg-Cst/Kal) for the adsorptive removal of crystal violet dye from its aqueous solutions. International Journal of Phytoremediation, 2022, 24, 796-807.	3.1	40
2	Dye Removal From Waste Water Using Metal Organic Frameworks. , 2021, , 375-394.		5
3	Efficient ultrasonic assisted adsorption of organic pollutants employing bimetallic-carbon nanocomposites. Separation Science and Technology, 2021, 56, 2895-2908.	2.5	33
4	Synthesis and characterization of Egg shell (ES) and Egg shell with membrane (ESM) modified by ionic liquids. Chemical Data Collections, 2021, 33, 100717.	2.3	16
5	Efficient batch and Fixed-Bed sequestration of a basic dye using a novel variant of ordered mesoporous carbon as adsorbent. Arabian Journal of Chemistry, 2021, 14, 103186.	4.9	46
6	Recent progress in the synthesis of Layered Double Hydroxides and their application for the adsorptive removal of dyes: A review. Journal of Environmental Management, 2021, 295, 113017.	7.8	98
7	Batch and bulk adsorptive removal of anionic dye using metal/halide-free ordered mesoporous carbon as adsorbent. Journal of Cleaner Production, 2021, 321, 129060.	9.3	35
8	Utilisation of cobalt doped Iron based MOF for enhanced removal and recovery of methylene blue dye from waste water. Journal of Molecular Liquids, 2020, 314, 113642.	4.9	150
9	Permissible Synthetic Food Dyes in India. Resonance, 2020, 25, 567-577.	0.3	53
10	Sequestration of toxic congo red dye from aqueous solution using ecofriendly guar gum/ activated carbon nanocomposite International Journal of Biological Macromolecules, 2020, 158, 1310-1318.	7.5	102
11	Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. Journal of Molecular Liquids, 2019, 284, 343-352.	4.9	177
12	A review on halloysite-based adsorbents to remove pollutants in water and wastewater. Journal of Molecular Liquids, 2018, 269, 855-868.	4.9	150
13	Applications of egg shell and egg shell membrane as adsorbents: A review. Journal of Molecular Liquids, 2016, 223, 376-387.	4.9	210
14	Synthesis and characterization of YVO ₄ :Eu ³⁺ nanoparticles: kinetics and isotherm studies for the removal of Cd ²⁺ metal ion. Desalination and Water Treatment, 2016, 57, 2081-2088.	1.0	17
15	Separation of chromium from water samples using eggshell powder as a low-cost sorbent: kinetic and thermodynamic studies. Desalination and Water Treatment, 2015, 53, 214-220.	1.0	106
16	Adsorption kinetics and thermodynamics of hazardous dye Tropaeoline 000 unto Aeroxide Alu C (Nano) Tj ETQq	0 0 0 rgBT	Overlock 10
17	Utilization of bottom ash as a low-cost sorbent for the removal and recovery of a toxic halogen containing dye eosin yellow. Desalination and Water Treatment, 2014, 52, 4508-4519.	1.0	84
18	Optimization of Cr(VI) removal onto biosorbent eggshell membrane: experimental & mp; theoretical approaches. Desalination and Water Treatment, 2014, 52, 1307-1315.	1.0	103

#	Article	IF	Citations
19	Process development for the removal of hazardous anionic azo dye Congo red from wastewater by using hen feather as potential adsorbent. Desalination and Water Treatment, 2014, 52, 227-237.	1.0	105
20	Batch removal of hazardous azo dye Bismark Brown R using waste material hen feather. Ecological Engineering, 2013, 60, 249-253.	3.6	101
21	Adsorption of hazardous dye Eosin Yellow from aqueous solution onto waste material De-oiled Soya: Isotherm, kinetics and bulk removal. Journal of Molecular Liquids, 2013, 179, 133-140.	4.9	184
22	Batch and bulk removal of hazardous colouring agent Rose Bengal by adsorption techniques using bottom ash as adsorbent. RSC Advances, 2012, 2, 8381.	3.6	333
23	Decoloration treatment of a hazardous triarylmethane dye, Light Green SF (Yellowish) by waste material adsorbents. Journal of Colloid and Interface Science, 2010, 342, 518-527.	9.4	463
24	Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of Colloid and Interface Science, 2010, 343, 463-473.	9.4	628
25	Removal and recovery of Chrysoidine Y from aqueous solutions by waste materials. Journal of Colloid and Interface Science, 2010, 344, 497-507.	9.4	805
26	Removal of Yellow ME 7 GL from industrial effluent using electrochemical and adsorption techniques. International Journal of Environment and Pollution, 2010, 43, 308.	0.2	61
27	Batch and bulk removal of a triarylmethane dye, Fast Green FCF, from wastewater by adsorption over waste materials. Journal of Hazardous Materials, 2009, 163, 568-577.	12.4	122
28	Adsorption of carmoisine A from wastewater using waste materialsâ€"Bottom ash and deoiled soya. Journal of Colloid and Interface Science, 2009, 335, 24-33.	9.4	292
29	Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. Journal of Colloid and Interface Science, 2009, 337, 345-354.	9.4	467
30	Adsorptive removal of hazardous anionic dye "Congo red―from wastewater using waste materials and recovery by desorption. Journal of Colloid and Interface Science, 2009, 340, 16-26.	9.4	619
31	Adsorption of basic fuchsin using waste materials—bottom ash and deoiled soya—as adsorbents. Journal of Colloid and Interface Science, 2008, 319, 30-39.	9.4	256
32	Applicability of waste materials—bottom ash and deoiled soya—as adsorbents for the removal and recovery of a hazardous dye, brilliant green. Journal of Colloid and Interface Science, 2008, 326, 8-17.	9.4	117
33	Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials. Journal of Hazardous Materials, 2008, 150, 364-375.	12.4	117
34	Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (Bottom Ash and De-Oiled Soya). Journal of Hazardous Materials, 2008, 151, 821-832.	12.4	254
35	Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. Journal of Hazardous Materials, 2007, 146, 243-248.	12.4	354
36	Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. Journal of Hazardous Materials, 2007, 148, 229-240.	12.4	435

#	Article	IF	CITATIONS
37	Removal and Recovery of the Hazardous Azo Dye Acid Orange 7 through Adsorption over Waste Materials:Â Bottom Ash and De-Oiled Soya. Industrial & Engineering Chemistry Research, 2006, 45, 1446-1453.	3.7	349
38	Adsorption treatment and recovery of the hazardous dye, Brilliant Blue FCF, over bottom ash and de-oiled soya. Journal of Colloid and Interface Science, 2006, 293, 16-26.	9.4	243
39	Adsorption of a hazardous dye, erythrosine, over hen feathers. Journal of Colloid and Interface Science, 2006, 304, 52-57.	9.4	305
40	Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials—Bottom Ash and De-Oiled Soya, as adsorbents. Journal of Hazardous Materials, 2006, 136, 567-578.	12.4	135
41	Batch and bulk removal of hazardous dye, indigo carmine from wastewater through adsorption. Journal of Hazardous Materials, 2006, 137, 591-602.	12.4	130
42	Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials—Bottom Ash and De-Oiled Soya as adsorbents. Journal of Hazardous Materials, 2006, 138, 95-105.	12.4	80
43	Transient charging and discharging current studies on unstretched and stretched polypropylene films. Journal of Materials Science Letters, 2001, 20, 681-685.	0.5	14
44	Sequestration of crystal violet from aqueous solution using ash of black turmeric rhizome., 0, 220, 342-352.		38