John M Galbraith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9142859/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Appalachian Mine Soil Morphology and Properties. Soil Science Society of America Journal, 2004, 68, 1315-1325.	2.2	95
2	Effects of biochar on soil fertility and crop productivity in arid regions: a review. Arabian Journal of Geosciences, 2020, 13, .	1.3	85
3	Rapid Identification of Oilâ€Contaminated Soils Using Visible Nearâ€Infrared Diffuse Reflectance Spectroscopy. Journal of Environmental Quality, 2010, 39, 1378-1387.	2.0	80
4	Remote sensing of crop residue and tillage practices: Present capabilities and future prospects. Soil and Tillage Research, 2014, 138, 26-34.	5.6	76
5	Monitoring Wetland Change Using Inter-Annual Landsat Time-Series Data. Wetlands, 2012, 32, 1149-1162.	1.5	68
6	Effects of silvicultural treatments on survival and growth of trees planted on reclaimed mine lands in the Appalachians. Forest Ecology and Management, 2006, 223, 403-414.	3.2	62
7	Spectral reflectance variability from soil physicochemical properties in oil contaminated soils. Geoderma, 2012, 177-178, 80-89.	5.1	42
8	New constraints on the late Cenozoic incision history of the New River, Virginia. Geomorphology, 2005, 72, 54-72.	2.6	37
9	Sources of Uncertainty Affecting Soil Organic Carbon Estimates in Northern New York. Soil Science Society of America Journal, 2003, 67, 1206-1212.	2.2	32
10	A Revised Methodology for Estimation of Forest Soil Carbon from Spatial Soils and Forest Inventory Data Sets. Environmental Management, 2004, 33, S74.	2.7	27
11	Mapping wetlands using ASTER data: a comparison between classification trees and logistic regression. International Journal of Remote Sensing, 2009, 30, 3423-3440.	2.9	22
12	Mapping and Classification of Southwest Virginia Mine Soils. Soil Science Society of America Journal, 2005, 69, 463-472.	2.2	21
13	Continental United States Atmospheric Wet Calcium Deposition and Soil Inorganic Carbon Stocks. Soil Science Society of America Journal, 2009, 73, 989-994.	2.2	20
14	Validation Testing of a Portable Kit for Measuring an Active Soil Carbon Fraction. Soil Science Society of America Journal, 2011, 75, 2330-2340.	2.2	19
15	Assessing spatial variability of soil petroleum contamination using visible near-infrared diffuse reflectance spectroscopy. Journal of Environmental Monitoring, 2012, 14, 2886.	2.1	18
16	Effects of harvest frequency and biosolids application on switchgrass yield, feedstock quality, and theoretical ethanol yield. GCB Bioenergy, 2015, 7, 112-121.	5.6	18
17	Human-altered and human-transported (HAHT) soils in the U.S. soil classification system. Soil Science and Plant Nutrition, 2018, 64, 190-199.	1.9	17
18	AN EXPERT SYSTEM FOR SOIL TAXONOMY. Soil Science, 1998, 163, 748-758.	0.9	14

John M Galbraith

#	Article	IF	CITATIONS
19	Soil Organic Carbon Content in Frigid Southern Appalachian Mountain Soils. Soil Science Society of America Journal, 2004, 68, 194-203.	2.2	13
20	Influence of Mine Soil Properties on White Oak Seedling Growth: A Proposed Mine Soil Classification Model. Southern Journal of Applied Forestry, 2007, 31, 99-107.	0.3	12
21	Switchgrass Response to Cutting Frequency and Biosolids Amendment: Biomass Yield, Feedstock Quality, and Theoretical Ethanol Yield. Bioenergy Research, 2014, 7, 1191-1200.	3.9	11
22	Season Length Indicators and Land-Use Effects in Southeast Virginia Wet Flats. Soil Science Society of America Journal, 2005, 69, 1551-1558.	2.2	9
23	Potential Contribution of Combined Atmospheric Ca2+ and Mg2+ Wet Deposition Within the Continental U.S. to Soil Inorganic Carbon Sequestration. Pedosphere, 2013, 23, 808-814.	4.0	9
24	A logit model for predicting wetland location using ASTER and GIS. International Journal of Remote Sensing, 2009, 30, 2215-2236.	2.9	8
25	Pedogenic Carbonates and Radiocarbon Isotopes of Organic Carbon at Depth in the Russian Chernozem. Geosciences (Switzerland), 2018, 8, 458.	2.2	8
26	Effects of amendments and microtopography on created tidal freshwater wetland soil morphology and carbon. Soil Science Society of America Journal, 2020, 84, 638-652.	2.2	8
27	Humusica 2, Article 14: Anthropogenic soils and humus systems, comparing classification systems. Applied Soil Ecology, 2018, 122, 200-203.	4.3	7
28	Usability of soil survey soil texture data for soil health indicator scoring. Communications in Soil Science and Plant Analysis, 2018, 49, 1826-1834.	1.4	7
29	A FUNCTIONAL ANALYSIS OF SOIL TAXONOMY IN RELATION TO EXPERT SYSTEM TECHNIQUES. Soil Science, 1998, 163, 739-747.	0.9	7
30	Evaluating Terrestrial Carbon Sequestration Options for Virginia. Environmental Management, 2007, 39, 139-150.	2.7	6
31	Biosolids Amendment and Harvest Frequency Affect Nitrogen Use Dynamics of Switchgrass Grown for Biofuel Production. Bioenergy Research, 2015, 8, 560-569.	3.9	6
32	Impacts of fundamental changes to Soil Taxonomy. South African Journal of Plant and Soil, 2018, 35, 263-267.	1.1	5
33	Humusica 2, article 18: Techno humus systems and global change – Greenhouse effect, soil and agriculture. Applied Soil Ecology, 2018, 122, 254-270.	4.3	5
34	Soil taxonomy proposals for acid sulfate soils and subaqueous soils raised by the 8th International Acid Sulfate Soils Conference. South African Journal of Plant and Soil, 2018, 35, 293-295.	1.1	5
35	Manganese oated IRIS to document reducing soil conditions. Soil Science Society of America Journal, 2021, 85, 2201-2209.	2.2	5
36	USING PUBLIC DOMAIN DATA TO AID IN FIELD IDENTIFICATION OF HYDRIC SOILS. Soil Science, 2003, 168, 563-575.	0.9	4

JOHN M GALBRAITH

#	Article	IF	CITATIONS
37	Development of Soil Taxonomy in the United States of America. Eurasian Soil Science, 2006, 39, 141-146.	1.6	4
38	Rationale for Proposed Changes to Soil Taxonomy Concerning the International Committee for Anthropogenic Soils. Soil Horizons, 2012, 53, 1-5.	0.3	3
39	Using CO2 Efflux Rates to Indicate Below-Ground Growing Seasons by Land-use Treatment. Wetlands Ecology and Management, 2006, 14, 133-145.	1.5	1
40	Comparing Field Sampling and Soil Survey Database for Spatial Heterogeneity in Surface Soil Granulometry: Implications for Ecosystem Services Assessment. Frontiers in Environmental Science, 2019, 7, .	3.3	1
41	Changing the hierarchical placement of soil moisture regimes in Soil Taxonomy. Soil Science Society of America Journal, 2021, 85, 488-500.	2.2	1
42	Pine sawdust biochar as a potential amendment for establishing trees in Appalachian mine spoils. Reforesta, 2018, , 1-14.	0.4	1
43	Characterization of Gelolls in northern Alaska, USA. Soil Science Society of America Journal, 2020, 84, 818-832.	2.2	0
	New Teshasharing in Field Cell Courses 2011		

44 New Technologies in Field Soil Survey. , 2011, , .

0