
Tom P Monie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9142761/publications.pdf Version: 2024-02-01

TOM P MONIE

#	Article	IF	CITATIONS
1	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic receptors. British Journal of Pharmacology, 2021, 178, S264-S312.	5.4	148
2	Pattern recognition receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
3	Ultrasmall silica nanoparticles directly ligate the T cell receptor complex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 285-291.	7.1	17
4	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Catalytic receptors. British Journal of Pharmacology, 2019, 176, S247-S296.	5.4	156
5	Pattern recognition receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	2
6	A Novel Mutation in Helical Domain 2 of <i>NOD2</i> in Sporadic Blau Syndrome. Ocular Immunology and Inflammation, 2018, 26, 292-294.	1.8	9
7	Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Scientific Reports, 2017, 7, 40660.	3.3	47
8	The Canonical Inflammasome: A Macromolecular Complex Driving Inflammation. Sub-Cellular Biochemistry, 2017, 83, 43-73.	2.4	15
9	Immune Cells and the Process of Pattern Recognition. , 2017, , 41-82.		0
10	The Innate Immune System in Health and Disease. , 2017, , 189-207.		2
11	Integrated Innate Immunity—Combining Activation and Effector Functions. , 2017, , 121-169.		0
12	Intestinal APCs of the endogenous nanomineral pathway fail to express PD-L1 in Crohn's disease. Scientific Reports, 2016, 6, 26747.	3.3	30
13	Dynamic phosphorylation of RelA on Ser42 and Ser45 in response to TNFα stimulation regulates DNA binding and transcription. Open Biology, 2016, 6, 160055.	3.6	19
14	CARD9 negatively regulates NLRP3-induced IL-1Î ² production on Salmonella infection of macrophages. Nature Communications, 2016, 7, 12874.	12.8	28
15	Bioinformatic Analysis of Toll-Like Receptor Sequences and Structures. Methods in Molecular Biology, 2016, 1390, 29-39.	0.9	3
16	Allergens and Activation of the Toll-Like Receptor Response. Methods in Molecular Biology, 2016, 1390, 341-350.	0.9	5
17	Dysfunctional Crohn's Disease-Associated NOD2 Polymorphisms Cannot be Reliably Predicted on the Basis of RIPK2 Binding or Membrane Association. Frontiers in Immunology, 2015, 6, 521.	4.8	8
18	International Union of Basic and Clinical Pharmacology. XCVI. Pattern Recognition Receptors in Health and Disease. Pharmacological Reviews, 2015, 67, 462-504.	16.0	41

TOM P MONIE

#	Article	IF	CITATIONS
19	Caspaseâ€8 functions as a key mediator of inflammation and proâ€lLâ€1β processing via both canonical and nonâ€canonical pathways. Immunological Reviews, 2015, 265, 181-193.	6.0	55
20	Blau syndrome polymorphisms in NOD2 identify nucleotide hydrolysis and helical domain 1 as signalling regulators. FEBS Letters, 2014, 588, 3382-3389.	2.8	30
21	Polymorphisms at Amino Acid Residues 141 and 154 Influence Conformational Variation in Ovine PrP. BioMed Research International, 2014, 2014, 1-14.	1.9	6
22	Insights into the molecular basis of the NOD2 signalling pathway. Open Biology, 2014, 4, 140178.	3.6	85
23	Engagement of Nucleotide-binding Oligomerization Domain-containing Protein 1 (NOD1) by Receptor-interacting Protein 2 (RIP2) Is Insufficient for Signal Transduction. Journal of Biological Chemistry, 2014, 289, 22900-22914.	3.4	25
24	Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7403-7408.	7.1	285
25	Interaction between NOD2 and CARD9 involves the NOD2 NACHT and the linker region between the NOD2 CARDs and NACHT domain. FEBS Letters, 2014, 588, 2830-2836.	2.8	17
26	The nucleotide-binding oligomerization domain-containing protein 1 (NOD1) polymorphism S7N does not affect receptor function. BMC Research Notes, 2014, 7, 124.	1.4	0
27	NLR activation takes a direct route. Trends in Biochemical Sciences, 2013, 38, 131-139.	7.5	33
28	Cell Swelling and the NLRP3 Inflammasome. Immunity, 2013, 38, 399.	14.3	8
29	<i>Salmonella</i> Infection Induces Recruitment of Caspase-8 to the Inflammasome To Modulate IL-1Î ² Production. Journal of Immunology, 2013, 191, 5239-5246.	0.8	206
30	Comparative Genomic and Sequence Analysis Provides Insight into the Molecular Functionality of NOD1 and NOD2. Frontiers in Immunology, 2013, 4, 317.	4.8	38
31	Allergens as Immunomodulatory Proteins: The Cat Dander Protein Fel d 1 Enhances TLR Activation by Lipid Ligands. Journal of Immunology, 2013, 191, 1529-1535.	0.8	85
32	The immunoglobulin domain of the sodium channel β3 subunit contains a surfaceâ€localized disulfide bond that is required for homophilic binding. FASEB Journal, 2013, 27, 568-580.	0.5	27
33	The N-Terminal Region of the Human Autophagy Protein ATG16L1 Contains a Domain That Folds into a Helical Structure Consistent with Formation of a Coiled-Coil. PLoS ONE, 2013, 8, e76237.	2.5	15
34	Pathogen Sensing by Nucleotide-binding Oligomerization Domain-containing Protein 2 (NOD2) Is Mediated by Direct Binding to Muramyl Dipeptide and ATP. Journal of Biological Chemistry, 2012, 287, 23057-23067.	3.4	136
35	Mice, men and the relatives: cross-species studies underpin innate immunity. Open Biology, 2012, 2, 120015.	3.6	74
36	Computational analysis predicts the Kaposi's sarcomaâ€associated herpesvirus tegument protein ORF63 to be alpha helical. Proteins: Structure, Function and Bioinformatics, 2012, 80, 2063-2070.	2.6	7

Tom P Monie

#	Article	IF	CITATIONS
37	Innate Immune Sensors and Gastrointestinal Bacterial Infections. Clinical and Developmental Immunology, 2011, 2011, 1-11.	3.3	14
38	Viral Inhibitory Peptide of TLR4, a Peptide Derived from Vaccinia Protein A46, Specifically Inhibits TLR4 by Directly Targeting MyD88 Adaptor-Like and TRIF-Related Adaptor Molecule. Journal of Immunology, 2010, 185, 4261-4271.	0.8	125
39	TRIL, a Functional Component of the TLR4 Signaling Complex, Highly Expressed in Brain. Journal of Immunology, 2009, 183, 3989-3995.	0.8	48
40	Activating immunity: lessons from the TLRs and NLRs. Trends in Biochemical Sciences, 2009, 34, 553-561.	7.5	86
41	Structure and regulation of cytoplasmic adapter proteins involved in innate immune signaling. Immunological Reviews, 2009, 227, 161-175.	6.0	31
42	Bioinformatic Analysis of Toll-Like Receptor Sequences and Structures. Methods in Molecular Biology, 2009, 517, 69-79.	0.9	4
43	Elucidation of the MD-2/TLR4 Interface Required for Signaling by Lipid IVa. Journal of Immunology, 2008, 181, 1245-1254.	0.8	134
44	A Dimer of the Toll-Like Receptor 4 Cytoplasmic Domain Provides a Specific Scaffold for the Recruitment of Signalling Adaptor Proteins. PLoS ONE, 2007, 2, e788.	2.5	166
45	Structural insights into the transcriptional and translational roles of Ebp1. EMBO Journal, 2007, 26, 3936-3944.	7.8	88
46	A peptide motif in Raver1 mediates splicing repression by interaction with the PTB RRM2 domain. Nature Structural and Molecular Biology, 2006, 13, 839-848.	8.2	92
47	Conformation of Polypyrimidine Tract Binding Protein in Solution. Structure, 2006, 14, 1021-1027.	3.3	60
48	The polypyrimidine tract binding protein is a monomer. Rna, 2005, 11, 1803-1808.	3.5	35
49	Structure and RNA Interactions of the N-Terminal RRM Domains of PTB. Structure, 2004, 12, 1631-1643.	3.3	87