Steven A Stacker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9142652/publications.pdf

Version: 2024-02-01

22153 19749 14,156 134 59 117 citations h-index g-index papers 136 136 136 12875 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nature Medicine, 2001, 7, 186-191.	30.7	1,113
2	Lymphangiogenesis and cancer metastasis. Nature Reviews Cancer, 2002, 2, 573-583.	28.4	729
3	Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell, 1995, 83, 301-311.	28.9	673
4	Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nature Reviews Cancer, 2014, 14, 159-172.	28.4	621
5	Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO Journal, 2001, 20, 1223-1231.	7.8	583
6	Sox18 induces development of the lymphatic vasculature in mice. Nature, 2008, 456, 643-647.	27.8	483
7	Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. Journal of Clinical Investigation, 2005, 115 , 247 - 257 .	8.2	475
8	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	7.2	429
9	VEGF-D Is the Strongest Angiogenic and Lymphangiogenic Effector Among VEGFs Delivered Into Skeletal Muscle via Adenoviruses. Circulation Research, 2003, 92, 1098-1106.	4.5	374
10	Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. Journal of Clinical Investigation, 2005, 115 , 247 - 257 .	8.2	326
11	VEGFâ€C and VEGFâ€D expression in neuroendocrine cells and their receptor, VEGFRâ€3, in fenestrated blood vessels in human tissues. FASEB Journal, 2000, 14, 2087-2096.	0.5	299
12	Focus on lymphangiogenesis in tumor metastasis. Cancer Cell, 2005, 7, 121-127.	16.8	291
13	Biosynthesis of Vascular Endothelial Growth Factor-D Involves Proteolytic Processing Which Generates Non-covalent Homodimers. Journal of Biological Chemistry, 1999, 274, 32127-32136.	3.4	281
14	The role of tumor lymphangiogenesis in metastatic spread. FASEB Journal, 2002, 16, 922-934.	0.5	264
15	VEGF-D Promotes Tumor Metastasis by Regulating Prostaglandins Produced by the Collecting Lymphatic Endothelium. Cancer Cell, 2012, 21, 181-195.	16.8	244
16	Vascular Endothelial Growth Factor D Is Dispensable for Development of the Lymphatic System. Molecular and Cellular Biology, 2005, 25, 2441-2449.	2.3	232
17	Chronic stress in mice remodels lymph vasculature to promote tumour cell dissemination. Nature Communications, 2016, 7, 10634.	12.8	232
18	Molecular Control of Lymphatic Metastasis. Annals of the New York Academy of Sciences, 2008, 1131, 225-234.	3.8	229

#	Article	IF	CITATIONS
19	The Wnt Receptor Ryk Is Required for Wnt5a-Mediated Axon Guidance on the Contralateral Side of the Corpus Callosum. Journal of Neuroscience, 2006, 26, 5840-5848.	3.6	216
20	Plasmin Activates the Lymphangiogenic Growth Factors VEGF-C and VEGF-D. Journal of Experimental Medicine, 2003, 198, 863-868.	8.5	184
21	Adenoviral Catheter-Mediated Intramyocardial Gene Transfer Using the Mature Form of Vascular Endothelial Growth Factor-D Induces Transmural Angiogenesis in Porcine Heart. Circulation, 2004, 109, 1029-1035.	1.6	182
22	Deletion of Vascular Endothelial Growth Factor C (VEGF-C) and VEGF-D Is Not Equivalent to VEGF Receptor 3 Deletion in Mouse Embryos. Molecular and Cellular Biology, 2008, 28, 4843-4850.	2.3	174
23	Ryk-deficient mice exhibit craniofacial defects associated with perturbed Eph receptor crosstalk. Nature Genetics, 2000, 25, 414-418.	21.4	157
24	The Specificity of Receptor Binding by Vascular Endothelial Growth Factor-D Is Different in Mouse and Man. Journal of Biological Chemistry, 2001, 276, 19166-19171.	3.4	152
25	Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis, 2006, 27, 1729-1738.	2.8	150
26	Targeting lymphangiogenesis to prevent tumour metastasis. British Journal of Cancer, 2006, 94, 1355-1360.	6.4	148
27	Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development (Cambridge), 2014, 141, 1239-1249.	2.5	145
28	Molecular regulation of the VEGF family $\tilde{A} \in \hat{A} \in \hat{A}$ inducers of angiogenesis and lymphangiogenesis. Apmis, 2004, 112, 463-480.	2.0	139
29	The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment. Frontiers in Immunology, 2016, 7, 621.	4.8	132
30	Localization of vascular endothelial growth factor-D in malignant melanoma suggests a role in tumour angiogenesis. Journal of Pathology, 2001, 193, 147-154.	4.5	130
31	Tumor lymphangiogenesis and metastatic spreadâ€"New players begin to emerge. International Journal of Cancer, 2006, 119, 1755-1760.	5.1	126
32	Lymphangiogenic Growth Factor Responsiveness Is Modulated by Postnatal Lymphatic Vessel Maturation. American Journal of Pathology, 2006, 169, 708-718.	3.8	125
33	Emerging Roles for VEGF-D in Human Disease. Biomolecules, 2018, 8, 1.	4.0	125
34	Viral Vascular Endothelial Growth Factor Plays a Critical Role in Orf Virus Infection. Journal of Virology, 2000, 74, 10699-10706.	3.4	123
35	Distinct Roles of Vascular Endothelial Growth Factor-D in Lymphangiogenesis and Metastasis. American Journal of Pathology, 2007, 170, 1348-1361.	3.8	119
36	Tissues in Different Anatomical Sites Can Sculpt and Vary the Tumor Microenvironment to Affect Responses to Therapy. Molecular Therapy, 2014, 22, 18-27.	8.2	112

#	Article	IF	Citations
37	EGFR blockade with ZD1839 ("lressaâ€) potentiates the antitumor effects of single and multiple fractions of ionizing radiation in human A431 squamous cell carcinoma. International Journal of Radiation Oncology Biology Physics, 2003, 55, 713-723.	0.8	110
38	The Wnt Coreceptor Ryk Regulates Wnt/Planar Cell Polarity by Modulating the Degradation of the Core Planar Cell Polarity Component Vangl2. Journal of Biological Chemistry, 2012, 287, 44518-44525.	3.4	110
39	The vascular endothelial growth factor family; proteins which guide the development of the vasculature. International Journal of Experimental Pathology, 2002, 79, 255-265.	1.3	105
40	Adenovirus encoding vascular endothelial growth factor–D induces tissue-specific vascular patterns in vivo. Blood, 2002, 99, 4434-4442.	1.4	102
41	Expression of Vascular Endothelial Growth Factor Receptor-3 by Lymphatic Endothelial Cells Is Associated with Lymph Node Metastasis in Prostate Cancer. Clinical Cancer Research, 2004, 10, 5137-5144.	7.0	102
42	Monoclonal antibodies to vascular endothelial growth factor-D block its interactions with both VEGF receptor-2 and VEGF receptor-3. FEBS Journal, 2000, 267, 2505-2515.	0.2	101
43	Proprotein convertases promote processing of VEGFâ€D, a critical step for binding the angiogenic receptor VEGFRâ€2. FASEB Journal, 2007, 21, 1088-1098.	0.5	100
44	A Mutant Form of Vascular Endothelial Growth Factor (VEGF) That Lacks VEGF Receptor-2 Activation Retains the Ability to Induce Vascular Permeability. Journal of Biological Chemistry, 1999, 274, 34884-34892.	3.4	96
45	Molecular control of lymphangiogenesis. BioEssays, 2002, 24, 1030-1040.	2.5	90
46	The evolving role of lymphatics in cancer metastasis. Current Opinion in Immunology, 2018, 53, 64-73.	5.5	88
47	Wnt5a Regulates Midbrain Dopaminergic Axon Growth and Guidance. PLoS ONE, 2011, 6, e18373.	2.5	86
48	Mutagenesis and selection of PDZ domains that bind new protein targets. Nature Biotechnology, 1999, 17, 170-175.	17.5	84
49	The Wnt Receptor Ryk Plays a Role in Mammalian Planar Cell Polarity Signaling. Journal of Biological Chemistry, 2012, 287, 29312-29323.	3.4	83
50	Genetic Dissection of Differential Signaling Threshold Requirements for the Wnt/ \hat{l}^2 -Catenin Pathway In Vivo. PLoS Genetics, 2010, 6, e1000816.	3.5	81
51	Angiogenic Responses of Vascular Endothelial Growth Factors in Periadventitial Tissue. Human Gene Therapy, 2003, 14, 1451-1462.	2.7	75
52	Placenta Growth Factor and Vascular Endothelial Growth Factor are Co-Expressed During Early Embryonic Development. Growth Factors, 1997, 15, 69-80.	1.7	70
53	VEGF-D is an X-linked/AP-1 Regulated Putative Onco-angiogen in Human Glioblastoma Multiforme. Molecular Medicine, 2001, 7, 598-608.	4.4	69
54	VEGFD regulates blood vascular development by modulating SOX18 activity. Blood, 2014, 123, 1102-1112.	1.4	65

#	Article	IF	Citations
55	Lymphangiogenic growth factors as markers of tumor metastasis. Apmis, 2004, 112, 539-549.	2.0	64
56	Viral Vascular Endothelial Growth Factors Vary Extensively in Amino Acid Sequence, Receptor-binding Specificities, and the Ability to Induce Vascular Permeability yet Are Uniformly Active Mitogens. Journal of Biological Chemistry, 2003, 278, 38004-38014.	3.4	63
57	Vascular endothelial growth factor-D expression in human atherosclerotic lesions. Cardiovascular Research, 2003, 59, 971-979.	3.8	63
58	Where to now with the VEGF signalling pathway in cancer?. Chinese Journal of Cancer, 2013, 32, 297-302.	4.9	63
59	A New Breast Carcinoma Antigen Defined by a Monoclonal Antibody2. Journal of the National Cancer Institute, 1985, 75, 801-811.	6.3	61
60	Multiple Forms of Mouse Vascular Endothelial Growth Factor-D Are Generated by RNA Splicing and Proteolysis. Journal of Biological Chemistry, 2001, 276, 44307-44314.	3.4	59
61	A Role for Bone Morphogenetic Protein-4 in Lymph Node Vascular Remodeling and Primary Tumor Growth. Cancer Research, 2011, 71, 6547-6557.	0.9	59
62	Vegfd modulates both angiogenesis and lymphangiogenesis during zebrafish embryonic development. Development (Cambridge), 2017, 144, 507-518.	2.5	56
63	The Angiogenic and Lymphangiogenic Factor Vascular Endothelial Growth Factor-D Exhibits a Paracrine Mode of Action in Cancer. Growth Factors, 2002, 20, 99-107.	1.7	54
64	The Vascular Endothelial Growth Factor Family: Signalling for Vascular Development. Growth Factors, 1999, 17, 1-11.	1.7	52
65	From Anti-Angiogenesis to Anti-Lymphangiogenesis: Emerging Trends in Cancer Therapy. Lymphatic Research and Biology, 2008, 6, 165-172.	1.1	52
66	The Interplay Between Lymphatic Vessels and Chemokines. Frontiers in Immunology, 2019, 10, 518.	4.8	52
67	Renal ischemia-reperfusion increases endothelial VEGFR-2 without increasing VEGF or VEGFR-1 expression. Kidney International, 2002, 61, 1696-1706.	5.2	49
68	The connection between lymphangiogenic signalling and prostaglandin biology: A missing link in the metastatic pathway. Oncotarget, 2012, 3, 893-906.	1.8	47
69	Pseudocowpox virus Encodes a Homolog of Vascular Endothelial Growth Factor. Virology, 2003, 305, 298-309.	2.4	44
70	The Wnt Receptor Ryk Reduces Neuronal and Cell Survival Capacity by Repressing FOXO Activity During the Early Phases of Mutant Huntingtin Pathogenicity. PLoS Biology, 2014, 12, e1001895.	5 . 6	42
71	The biochemistry, signalling and disease relevance of RYK and other WNT-binding receptor tyrosine kinases. Growth Factors, 2018, 36, 15-40.	1.7	42
72	Comparison of mammary serum antigen (MSA) and CA15-3 levels in the serum of patients with breast cancer. British Journal of Cancer, 1987, 56, 820-824.	6.4	39

#	Article	IF	Citations
73	Importance of Wnt Signaling in the Tumor Stroma Microenvironment. Current Cancer Drug Targets, 2008, 8, 454-465.	1.6	39
74	Molecular Targeting of Lymphatics for Therapy. Current Pharmaceutical Design, 2004, 10, 65-74.	1.9	37
75	Signaling for lymphangiogenesis via VEGFR-3 is required for the early events of metastasis. Clinical and Experimental Metastasis, 2013, 30, 819-832.	3.3	37
76	Genome-wide functional analysis reveals central signaling regulators of lymphatic endothelial cell migration and remodeling. Science Signaling, 2017, 10 , .	3.6	37
77	Revelations of the RYK receptor. BioEssays, 2000, 23, 34-45.	2.5	36
78	A system for quantifying the patterning of the lymphatic vasculature. Growth Factors, 2007, 25, 417-425.	1.7	36
79	Vascular Endothelial Growth Factor-d Modulates Caliber and Function of Initial Lymphatics in the Dermis. Journal of Investigative Dermatology, 2013, 133, 2074-2084.	0.7	36
80	Arap3 is dysregulated in a mouse model of hypotrichosis–lymphedema–telangiectasia and regulates lymphatic vascular development. Human Molecular Genetics, 2014, 23, 1286-1297.	2.9	36
81	Tie2 Receptor Expression and Phosphorylation in Cultured Cells and Mouse Tissues. FEBS Journal, 1997, 244, 774-779.	0.2	35
82	Differential Receptor Binding and Regulatory Mechanisms for the Lymphangiogenic Growth Factors Vascular Endothelial Growth Factor (VEGF)-C and -D. Journal of Biological Chemistry, 2016, 291, 27265-27278.	3.4	35
83	CCL27/CCL28–CCR10 Chemokine Signaling Mediates Migration of Lymphatic Endothelial Cells. Cancer Research, 2019, 79, 1558-1572.	0.9	33
84	Proteolytic processing of vascular endothelial growth factor $\hat{a} \in D$ is essential for its capacity to promote the growth and spread of cancer. FASEB Journal, 2011, 25, 2615-2625.	0.5	32
85	Vascular endothelial growth factor-D: signaling mechanisms, biology, and clinical relevance. Growth Factors, 2012, 30, 283-296.	1.7	32
86	Non-canonical Wnt Signaling through Ryk Regulates the Generation of Somatostatin- and Parvalbumin-Expressing Cortical Interneurons. Neuron, 2019, 103, 853-864.e4.	8.1	31
87	Lymphatic endothelium: An important interactive surface for malignant cells. Pulmonary Pharmacology and Therapeutics, 2006, 19, 51-60.	2.6	30
88	Lymphatic vessel density in primary melanomas predicts sentinel lymph node status and risk of metastasis. Histopathology, 2012, 61, 702-710.	2.9	29
89	Vascular endothelial growth factor-D induces lymphangiogenesis and lymphatic metastasis in models of ductal pancreatic cancer. International Journal of Oncology, 2005, 27, 669-79.	3.3	29
90	Ryk, a Receptor Regulating Wnt5a-Mediated Neurogenesis and Axon Morphogenesis of Ventral Midbrain Dopaminergic Neurons. Stem Cells and Development, 2013, 22, 2132-2144.	2.1	28

#	Article	IF	Citations
91	Regenerating lizard tails: A new model for investigating lymphangiogenesis. FASEB Journal, 2003, 17, 1-13.	0.5	27
92	Tumor location and nature of lymphatic vessels are key determinants of cancer metastasis. Clinical and Experimental Metastasis, 2013, 30, 345-356.	3.3	26
93	The Propeptides of VEGF-D Determine Heparin Binding, Receptor Heterodimerization, and Effects on Tumor Biology. Journal of Biological Chemistry, 2013, 288, 8176-8186.	3.4	25
94	Genomic Structure and Expression of the Mouse Growth Factor Receptor Related to Tyrosine Kinases (Ryk). Journal of Biological Chemistry, 1999, 274, 7379-7390.	3.4	24
95	VEGF-D promotes pulmonary oedema in hyperoxic acute lung injury. Journal of Pathology, 2016, 239, 152-161.	4.5	24
96	Mechanisms of Lymphangiogenesis: Targets for Blocking the Metastatic Spread of Cancer. Current Cancer Drug Targets, 2005, 5, 561-571.	1.6	23
97	Systematic high-content genome-wide RNAi screens of endothelial cell migration and morphology. Scientific Data, 2017, 4, 170009.	5.3	23
98	Evolutionary Differences in the Vegf/Vegfr Code Reveal Organotypic Roles for the Endothelial Cell Receptor Kdr in Developmental Lymphangiogenesis. Cell Reports, 2019, 28, 2023-2036.e4.	6.4	23
99	A Fully Human Inhibitory Monoclonal Antibody to the Wnt Receptor RYK. PLoS ONE, 2013, 8, e75447.	2.5	22
100	Remodeling of the Lymphatic Vasculature during Mouse Mammary Gland Morphogenesis Is Mediated via Epithelial-Derived Lymphangiogenic Stimuli. American Journal of Pathology, 2012, 181, 2225-2238.	3.8	20
101	Molecular Pathways for Lymphangiogenesis and their Role in Human Disease. Novartis Foundation Symposium, 2006, 281, 38-49.	1.1	16
102	The VD1 Neutralizing Antibody to Vascular Endothelial Growth Factor-D: Binding Epitope and Relationship to Receptor Binding. Journal of Molecular Biology, 2011, 407, 581-593.	4.2	15
103	Preparation of human vascular endothelial growth factor-D for structural and preclinical therapeutic studies. Protein Expression and Purification, 2012, 82, 232-239.	1.3	15
104	Control of Gene Expression by Exosome-Derived Non-Coding RNAs in Cancer Angiogenesis and Lymphangiogenesis. Biomolecules, 2021, 11, 249.	4.0	15
105	Targeting lymphatic vessel functions through tyrosine kinases. Journal of Angiogenesis Research, 2010, 2, 13.	2.9	14
106	Vascular endothelial growth factor-D over-expressing tumor cells induce differential effects on uterine vasculature in a mouse model of endometrial cancer. Reproductive Biology and Endocrinology, 2010, 8, 84.	3.3	13
107	Lymphovascular and neural regulation of metastasis: Shared tumour signalling pathways and novel therapeutic approaches. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2013, 27, 409-425.	4.0	13
108	Wnt5a induces Ryk-dependent and -independent effects on callosal axon and dendrite growth. Growth Factors, 2014, 32, 11-17.	1.7	12

#	Article	IF	Citations
109	A Simple Bioassay for the Evaluation of Vascular Endothelial Growth Factors. Journal of Visualized Experiments, 2016, , .	0.3	10
110	Towards the biomarker-guided rational use of antiangiogenic agents in the treatment of metastatic colorectal cancer. Colorectal Cancer, 2012, 1, 149-161.	0.8	7
111	Exit Stage Left: A Tumor Cell's Journey from Lymph Node to Beyond. Trends in Cancer, 2018, 4, 519-522.	7.4	7
112	A Serum Test for the Diagnosis and Monitoring the Progress of Breast Cancer., 1987,, 217-227.		7
113	Brain Vascular Microenvironments in Cancer Metastasis. Biomolecules, 2022, 12, 401.	4.0	7
114	Exploring the role of endothelium in the tumour response to anti-angiogenic therapy. Biochemical Society Transactions, 2014, 42, 1569-1575.	3.4	6
115	The RYK Receptor Family. , 2015, , 685-741.		6
116	A Three-Dimensional Lymphatic Endothelial Cell Tube Formation Assay to Identify Novel Kinases Involved in Lymphatic Vessel Remodeling. Assay and Drug Development Technologies, 2017, 15, 30-43.	1.2	6
117	The fibrinolysis inhibitor α ₂ -antiplasmin restricts lymphatic remodelling and metastasis in a mouse model of cancer. Growth Factors, 2017, 35, 61-75.	1.7	6
118	Three-dimensional CRISPR screening reveals epigenetic interaction with anti-angiogenic therapy. Communications Biology, 2021, 4, 878.	4.4	6
119	Editorial [Hot Topic:Targeting Tumor Stroma (Guest Editors: Marc G. Achen and Steven A. Stacker)]. Current Cancer Drug Targets, 2008, 8, 446-446.	1.6	5
120	Deficiency of the Wnt receptor Ryk causes multiple cardiac and outflow tract defects. Growth Factors, 2018, 36, 58-68.	1.7	5
121	Expression and purification of bioactive, low-endotoxin recombinant human vitronectin. BioTechniques, 2014, 56, 331-3.	1.8	4
122	Counting nuclei released from microcarrier-based cultures using pro-fluorescent nucleic acid stains and volumetric flow cytometry. BioTechniques, 2017, 63, 34-36.	1.8	4
123	RYK-mediated filopodial pathfinding facilitates midgut elongation. Development (Cambridge), 2020, 147,	2.5	4
124	Growth factors: the journey continues. Growth Factors, 2016, 34, 1-4.	1.7	3
125	Soothing a Broken Heart. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1611-1613.	2.4	3
126	<i>Pkd1</i> and <i>Wnt5a</i> genetically interact to control lymphatic vascular morphogenesis in mice. Developmental Dynamics, 2022, 251, 336-349.	1.8	3

#	Article	IF	CITATIONS
127	VEGF receptors branch into new areas. Blood, 2004, 103, 4379-4380.	1.4	2
128	Plasmin activates VEGF-C and VEGF-D. International Congress Series, 2004, 1262, 79-82.	0.2	1
129	Lymphangiogenesis in Cancer Metastasis. Cancer Metastasis - Biology and Treatment, 2009, , .	0.1	1
130	The Lymphatics: On the Route to Cancer Metastasis. , 0, , 237-254.		0
131	Inhibitors of Angiogenesis. , 2002, , 261-292.		O
132	Vascular Endothelial Growth Factor D (VEGF-D). , 2003, , 559-564.		0
133	Lymphangiogenesis in Health and Disease – An Overview. Cancer Metastasis - Biology and Treatment, 2009, , 1-9.	0.1	O
134	Non-Canonical Wnt-Signaling through <i>Ryk</i> Regulates the Generation of Somatostatin- and Parvalbumin-Expressing Cortical Interneurons. SSRN Electronic Journal, 0, , .	0.4	0