Chris Soulsby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/914208/publications.pdf Version: 2024-02-01

		11608	33814
314	15,243	70	99
papers	citations	h-index	g-index
321	321	321	8149
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Assessing the role of location and scale of Nature Based Solutions for the enhancement of low flows. International Journal of River Basin Management, 2023, 21, 743-758.	1.5	6
2	The Rhine River basin. , 2022, , 333-391.		16
3	Disentangling the Influence of Landscape Characteristics, Hydroclimatic Variability and Land Management on Surface Water NO ₃ â€N Dynamics: Spatially Distributed Modeling Over 30Âyr in a Lowland Mixed Land Use Catchment. Water Resources Research, 2022, 58, .	1.7	9
4	Functional Multiâ€Scale Integration of Agricultural Nitrogenâ€Budgets Into Catchment Water Quality Modeling. Geophysical Research Letters, 2022, 49, .	1.5	2
5	Visualizing catchmentâ€scale spatioâ€temporal dynamics of storageâ€fluxâ€age interactions using a tracerâ€aided ecohydrological model. Hydrological Processes, 2022, 36, .	1.1	Ο
6	Critical Zone Response Times and Water Age Relationships Under Variable Catchment Wetness States: Insights Using a Tracerâ€Aided Ecohydrological Model. Water Resources Research, 2022, 58, .	1.7	5
7	Estimates of water partitioning in complex urban landscapes with isotopeâ€aided ecohydrological modelling. Hydrological Processes, 2022, 36, .	1.1	7
8	Using water age to explore hydrological processes in contrasting environments. Hydrological Processes, 2022, 36, .	1.1	0
9	Xylem water in riparian willow trees (<i>Salix alba</i>) reveals shallow sources of root water uptake by in situ monitoring of stable water isotopes. Hydrology and Earth System Sciences, 2022, 26, 2073-2092.	1.9	13
10	Modelling temporal variability of in situ soil water and vegetation isotopes reveals ecohydrological couplings in a riparian willow plot. Biogeosciences, 2022, 19, 2465-2485.	1.3	11
11	Assessing land use influences on isotopic variability and stream water ages in urbanising rural catchments. Isotopes in Environmental and Health Studies, 2022, 58, 277-300.	0.5	4
12	Seasonal variations in soil–plant interactions in contrasting urban green spaces: Insights from water stable isotopes. Journal of Hydrology, 2022, 612, 127998.	2.3	12
13	Tracer-aided identification of hydrological and biogeochemical controls on in-stream water quality in a riparian wetland. Water Research, 2022, 222, 118860.	5.3	5
14	Linking nitrate dynamics to water age in underground conduit flows in a karst catchment. Journal of Hydrology, 2021, 596, 125699.	2.3	10
15	Using soil water isotopes to infer the influence of contrasting urban green space on ecohydrological partitioning. Hydrology and Earth System Sciences, 2021, 25, 927-943.	1.9	19
16	Catchment Functioning Under Prolonged Drought Stress: Tracerâ€Aided Ecohydrological Modeling in an Intensively Managed Agricultural Catchment. Water Resources Research, 2021, 57, e2020WR029094.	1.7	11
17	Quantifying the effects of land use and model scale on water partitioning and water ages using tracer-aided ecohydrological models. Hydrology and Earth System Sciences, 2021, 25, 2239-2259.	1.9	43
18	Using isotopes to understand landscapeâ€scale connectivity in a groundwaterâ€dominated, lowland catchment under drought conditions. Hydrological Processes, 2021, 35, e14197.	1.1	20

#	Article	IF	CITATIONS
19	Quantifying the effects of urban green space on water partitioning and ages using an isotope-based ecohydrological model. Hydrology and Earth System Sciences, 2021, 25, 3635-3652.	1.9	28
20	Effects of streamflow isotope sampling strategies on the calibration of a tracerâ€∎ided rainfallâ€runoff model. Hydrological Processes, 2021, 35, e14223.	1.1	13
21	A longerâ€ŧerm perspective on soil moisture, groundwater and stream flow response to the 2018 drought in an experimental catchment in the Scottish Highlands. Hydrological Processes, 2021, 35, e14206.	1.1	10
22	Modelling ecohydrological feedbacks in forest and grassland plots under a prolonged drought anomaly in Central Europe 2018–2020. Hydrological Processes, 2021, 35, e14325.	1.1	11
23	Structural changes to forests during regeneration affect water flux partitioning, water ages and hydrological connectivity: Insights from tracer-aided ecohydrological modelling. Hydrology and Earth System Sciences, 2021, 25, 4861-4886.	1.9	12
24	Spatio-temporal variations in stable isotopes in peri-urban catchments: A preliminary assessment of potential and challenges in assessing streamflow sources. Journal of Hydrology, 2021, 600, 126685.	2.3	10
25	lsotope hydrology and water sources in a heavily urbanized stream. Hydrological Processes, 2021, 35, e14377.	1.1	12
26	Combining static and portable Cosmic ray neutron sensor data to assess catchment scale heterogeneity in soil water storage and their integrated role in catchment runoff response. Journal of Hydrology, 2021, 601, 126659.	2.3	4
27	Using StorAge Selection (SAS) functions to understand flow paths and age distributions in contrasting karst groundwater systems. Journal of Hydrology, 2021, 602, 126785.	2.3	12
28	Hydroclimatic variability and riparian wetland restoration control the hydrology and nutrient fluxes in a lowland agricultural catchment. Journal of Hydrology, 2021, 603, 126904.	2.3	11
29	Stable isotopes of water reveal differences in plant – soil water relationships across northern environments. Hydrological Processes, 2021, 35, e14023.	1.1	51
30	Riparian wetland rehabilitation and beaver re-colonization impacts on hydrological processes and water quality in a lowland agricultural catchment. Science of the Total Environment, 2020, 699, 134302.	3.9	54
31	Using isotopes to understand the evolution of water ages in disturbed mixed landâ€use catchments. Hydrological Processes, 2020, 34, 972-990.	1.1	17
32	An agent-based model that simulates the spatio-temporal dynamics of sources and transfer mechanisms contributing faecal indicator organisms to streams. Part 1: Background and model description. Journal of Environmental Management, 2020, 270, 110903.	3.8	5
33	Contrasting storage-flux-age interactions revealed by catchment inter-comparison using a tracer-aided runoff model. Journal of Hydrology, 2020, 590, 125226.	2.3	7
34	Water-energy-ecosystem nexus in small run-of-river hydropower: Optimal design and policy. Applied Energy, 2020, 280, 115936.	5.1	15
35	Critical Zone Storage Controls on the Water Ages of Ecohydrological Outputs. Geophysical Research Letters, 2020, 47, e2020GL088897.	1.5	31
36	Lessons from the 2018 drought for management of local water supplies in upland areas: A tracerâ€based assessment. Hydrological Processes, 2020, 34, 4190-4210.	1.1	16

#	Article	IF	CITATIONS
37	Modelling nonâ€stationary water ages in a tropical rainforest: A preliminary spatially distributed assessment. Hydrological Processes, 2020, 34, 4776-4793.	1.1	12
38	An agent-based model that simulates the spatio-temporal dynamics of sources and transfer mechanisms contributing faecal indicator organisms to streams. Part 2: Application to a small agricultural catchment. Journal of Environmental Management, 2020, 270, 110905.	3.8	5
39	Using hysteretic behaviour and hydrograph classification to identify hydrological function across the "hillslope–depression–stream―continuum in a karst catchment. Hydrological Processes, 2020, 34, 3464-3480.	1.1	8
40	Isotopeâ€aided modelling of ecohydrologic fluxes and water ages under mixed land use in Central Europe: The 2018 drought and its recovery. Hydrological Processes, 2020, 34, 3406-3425.	1.1	33
41	Characterizing the variability of transit time distributions and young water fractions in karst catchments using flux tracking. Hydrological Processes, 2020, 34, 3156-3174.	1.1	16
42	Coupled hydrological and biogeochemical modelling of nitrogen transport in the karst critical zone. Science of the Total Environment, 2020, 732, 138902.	3.9	31
43	Quantifying the relative importance of stock level, river temperature and discharge on the abundance of juvenile Atlantic salmon (<scp><i>Salmo salar</i></scp>). Ecohydrology, 2020, 13, e2231.	1.1	9
44	Urban water systems under climate stress: An isotopic perspective from Berlin, Germany. Hydrological Processes, 2020, 34, 3758-3776.	1.1	30
45	Headwaters drive streamflow and lowland tracer export in a largeâ€scale humid tropical catchment. Hydrological Processes, 2020, 34, 3824-3841.	1.1	13
46	Opportunities and challenges in using catchment-scale storage estimates from cosmic ray neutron sensors for rainfall-runoff modelling. Journal of Hydrology, 2020, 586, 124878.	2.3	27
47	Using isotopes to incorporate tree water storage and mixing dynamics into a distributed ecohydrologic modelling framework. Ecohydrology, 2020, 13, e2201.	1.1	51
48	Improving the Jarvis-type model with modified temperature and radiation functions for sap flow simulations. Journal of Hydrology, 2020, 587, 124981.	2.3	21
49	Using storage selection functions to assess mixing patterns and water ages of soil water, evaporation and transpiration. Advances in Water Resources, 2020, 141, 103586.	1.7	8
50	Using water stable isotopes to understand evaporation, moisture stress, and re-wetting in catchment forest and grassland soils of the summer drought of 2018. Hydrology and Earth System Sciences, 2020, 24, 3737-3752.	1.9	40
51	Assessing the influence of soil freeze–thaw cycles on catchment water storage–flux–age interactions using a tracer-aided ecohydrological model. Hydrology and Earth System Sciences, 2019, 23, 3319-3334.	1.9	22
52	Assessing the seasonal effect of flow regimes on availability of Atlantic salmon fry habitat in an upland Scottish stream. Science of the Total Environment, 2019, 696, 133857.	3.9	4
53	Deciphering key processes controlling rainfall isotopic variability during extreme tropical cyclones. Nature Communications, 2019, 10, 4321.	5.8	52
54	Assessing runoff generation in riparian wetlands: monitoring groundwater–surface water dynamics at the micro-catchment scale. Environmental Monitoring and Assessment, 2019, 191, 116.	1.3	12

#	Article	IF	CITATIONS
55	Spatially distributed tracer-aided runoff modelling and dynamics of storage and water ages in a permafrost-influenced catchment. Hydrology and Earth System Sciences, 2019, 23, 2507-2523.	1.9	22
56	Hysteretic response of sap flow in Scots pine (<scp><i>Pinus sylvestris</i></scp>) to meteorological forcing in a humid lowâ€energy headwater catchment. Ecohydrology, 2019, 12, e2125.	1.1	24
57	Ecohydrological modelling with <scp>EcH₂Oâ€iso</scp> to quantify forest and grassland effects on water partitioning and flux ages. Hydrological Processes, 2019, 33, 2174-2191.	1.1	40
58	How Hydrologic Connectivity Regulates Water Quality in River Corridors. Journal of the American Water Resources Association, 2019, 55, 369-381.	1.0	75
59	To what extent does hydrological connectivity control dynamics of faecal indicator organisms in streams? Initial hypothesis testing using a tracer-aided model. Journal of Hydrology, 2019, 570, 423-435.	2.3	12
60	A simple topography-driven and calibration-free runoff generation module. Hydrology and Earth System Sciences, 2019, 23, 787-809.	1.9	37
61	Hydrology at Aberdeen – thinking about water locally and globally. Scottish Geographical Journal, 2019, 135, 267-286.	0.4	1
62	Integration of juvenile habitat quality and river connectivity models to understand and prioritise the management of barriers for Atlantic salmon populations across spatial scales. Science of the Total Environment, 2019, 655, 557-566.	3.9	20
63	Climate-phenology-hydrology interactions in northern high latitudes: Assessing the value of remote sensing data in catchment ecohydrological studies. Science of the Total Environment, 2019, 656, 19-28.	3.9	32
64	Storage dynamics, hydrological connectivity and flux ages in a karst catchment: conceptual modelling using stable isotopes. Hydrology and Earth System Sciences, 2019, 23, 51-71.	1.9	51
65	What can we learn from multi-data calibration of a process-based ecohydrological model?. Environmental Modelling and Software, 2018, 101, 301-316.	1.9	48
66	Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types. Journal of Hydrology, 2018, 559, 684-697.	2.3	33
67	Using stable water isotopes to identify spatio-temporal controls on groundwater recharge in two contrasting East African aquifer systems. Hydrological Sciences Journal, 2018, 63, 862-877.	1.2	37
68	Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands. Environmental Research Letters, 2018, 13, 034028.	2.2	32
69	Modelling the effects of land cover and climate change on soil water partitioning in a boreal headwater catchment. Journal of Hydrology, 2018, 558, 520-531.	2.3	32
70	Role of riparian wetlands and hydrological connectivity in the dynamics of stream thermal regimes. Hydrology Research, 2018, 49, 634-647.	1.1	4
71	How can streamflow and climate-landscape data be used to estimate baseflow mean response time?. Journal of Hydrology, 2018, 557, 916-930.	2.3	8
72	Integrating processâ€based flow and temperature models to assess riparian forests and temperature amelioration in salmon streams. Hydrological Processes, 2018, 32, 776-791.	1.1	19

#	Article	IF	CITATIONS
73	Using spatial-stream-network models and long-term data to understand and predict dynamics of faecal contamination in a mixed land-use catchment. Science of the Total Environment, 2018, 612, 840-852.	3.9	29
74	Using stable isotopes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. Journal of Hydrology, 2018, 556, 279-293.	2.3	116
75	EcH ₂ O-isoÂ1.0: water isotopes and age tracking in a process-based, distributed ecohydrological model. Geoscientific Model Development, 2018, 11, 3045-3069.	1.3	88
76	Testing a spatially distributed tracerâ€aided runoff model in a snowâ€influenced catchment: Effects of multicriteria calibration on streamwater ages. Hydrological Processes, 2018, 32, 3089-3107.	1.1	12
77	A general analytical approach for assessing the effects of hydroclimatic variability on fish habitat. Journal of Hydrology, 2018, 566, 520-530.	2.3	9
78	Conceptualizing catchment storage dynamics and nonlinearities. Hydrological Processes, 2018, 32, 3299-3303.	1.1	12
79	Water ages in the critical zone of long-term experimental sites in northern latitudes. Hydrology and Earth System Sciences, 2018, 22, 3965-3981.	1.9	37
80	High riverine CO2 emissions at the permafrost boundary of Western Siberia. Nature Geoscience, 2018, 11, 825-829.	5.4	64
81	Using stable isotopes to estimate travel times in a dataâ€ s parse Arctic catchment: Challenges and possible solutions. Hydrological Processes, 2018, 32, 1936-1952.	1.1	34
82	Incorporating estimates of capture probability and river network covariance in novel habitat – abundance models: Assessing the effects of conservation stocking on catchment-scale production of juvenile Atlantic salmon (Salmo salar) from a long-term electrofishing dataset. Ecological Indicators, 2018, 93, 302-315.	2.6	13
83	Spatio-temporal diel DOC cycles in a wet, low energy, northern catchment: Highlighting and questioning the sub-daily rhythms of catchment functioning. Journal of Hydrology, 2018, 563, 962-974.	2.3	7
84	Measuring and Modeling Stable Isotopes of Mobile and Bulk Soil Water. Vadose Zone Journal, 2018, 17, 1-18.	1.3	84
85	Characterization of surface water isotope spatial patterns of Scotland. Journal of Geochemical Exploration, 2018, 194, 71-80.	1.5	20
86	Groundwater dynamics at the hillslope–riparian interface in a year with extreme winter rainfall. Journal of Hydrology, 2018, 564, 509-528.	2.3	24
87	On the Use of StorAge Selection Functions to Assess Timeâ€Variant Travel Times in Lakes. Water Resources Research, 2018, 54, 5163-5185.	1.7	12
88	Characterizing the heterogeneity of karst critical zone and its hydrological function: An integrated approach. Hydrological Processes, 2018, 32, 2932-2946.	1.1	58
89	Storage, mixing, and fluxes of water in the critical zone across northern environments inferred by stable isotopes of soil water. Hydrological Processes, 2018, 32, 1720-1737.	1.1	52
90	Spatially distributed tracerâ€aided modelling to explore water and isotope transport, storage and mixing in a pristine, humid tropical catchment. Hydrological Processes, 2018, 32, 3206-3224.	1.1	27

#	Article	IF	CITATIONS
91	Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: A minimalist approach to parameterisation. Journal of Hydrology, 2017, 547, 664-677.	2.3	60
92	Metrics to assess how longitudinal channel network connectivity and inâ€stream Atlantic salmon habitats are impacted by hydropower regulation. Hydrological Processes, 2017, 31, 2132-2142.	1.1	21
93	A probabilistic approach to quantifying hydrologic thresholds regulating migration of adult Atlantic salmon into spawning streams. Water Resources Research, 2017, 53, 2264-2277.	1.7	15
94	Using SAS functions and highâ€resolution isotope data to unravel travel time distributions in headwater catchments. Water Resources Research, 2017, 53, 1864-1878.	1.7	102
95	Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments. Science of the Total Environment, 2017, 595, 486-493.	3.9	72
96	Save northern high-latitude catchments. Nature Geoscience, 2017, 10, 324-325.	5.4	71
97	Hydraulic modelling of the spatial and temporal variability in Atlantic salmon parr habitat availability in an upland stream. Science of the Total Environment, 2017, 601-602, 1046-1059.	3.9	24
98	Taming the flood-How far can we go with trees?. Hydrological Processes, 2017, 31, 3122-3126.	1.1	47
99	The essential value of longâ€ŧerm experimental data for hydrology and water management. Water Resources Research, 2017, 53, 2598-2604.	1.7	102
100	Assessing the environmental controls on Scots pine transpiration and the implications for water partitioning in a boreal headwater catchment. Agricultural and Forest Meteorology, 2017, 240-241, 58-66.	1.9	66
101	Scaling effects of riparian peatlands on stable isotopes in runoff and DOC mobilisation. Journal of Hydrology, 2017, 549, 220-235.	2.3	28
102	Testing the maximum entropy production approach for estimating evapotranspiration from closed canopy shrubland in a lowâ€energy humid environment. Hydrological Processes, 2017, 31, 4613-4621.	1.1	19
103	Spatio-temporal effects of river regulation on habitat quality for Atlantic salmon fry. Ecological Indicators, 2017, 83, 292-302.	2.6	9
104	Influence of forest and shrub canopies on precipitation partitioning and isotopic signatures. Hydrological Processes, 2017, 31, 4282-4296.	1.1	32
105	Groundwater isoscapes in a montane headwater catchment show dominance of wellâ€mixed storage. Hydrological Processes, 2017, 31, 3504-3519.	1.1	27
106	Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach. Water Resources Research, 2017, 53, 5813-5830.	1.7	49
107	No influence of CO ₂ on stable isotope analyses of soil waters with offâ€axis integrated cavity output spectroscopy (OAâ€iCOS). Rapid Communications in Mass Spectrometry, 2017, 31, 430-436.	0.7	15
108	Catchmentâ€scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone. Hydrological Processes, 2017, 31, 3421-3436.	1.1	44

#	Article	IF	CITATIONS
109	Using synoptic tracer surveys to assess runoff sources in an Andean headwater catchment in central Chile. Environmental Monitoring and Assessment, 2017, 189, 440.	1.3	23
110	Using highâ€resolution isotope data and alternative calibration strategies for a tracerâ€eided runoff model in a nested catchment. Hydrological Processes, 2017, 31, 3962-3978.	1.1	17
111	Evaporation fractionation in a peatland drainage network affects stream water isotope composition. Water Resources Research, 2017, 53, 851-866.	1.7	92
112	Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model. Hydrology and Earth System Sciences, 2017, 21, 5089-5110.	1.9	69
113	Soil water stable isotopes reveal evaporation dynamics at the soil–plant–atmosphere interface of the critical zone. Hydrology and Earth System Sciences, 2017, 21, 3839-3858.	1.9	119
114	Characterizing the age distribution of catchment evaporative losses. Hydrological Processes, 2016, 30, 1308-1312.	1.1	25
115	Linking tracers, water age and conceptual models to identify dominant runoff processes in a sparsely monitored humid tropical catchment. Hydrological Processes, 2016, 30, 4477-4493.	1.1	24
116	Spatial organization of groundwater dynamics and streamflow response from different hydropedological units in a montane catchment. Hydrological Processes, 2016, 30, 3735-3753.	1.1	42
117	Key drivers controlling stable isotope variations in daily precipitation of Costa Rica: Caribbean Sea versus Eastern Pacific Ocean moisture sources. Quaternary Science Reviews, 2016, 131, 250-261.	1.4	68
118	Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis. Water Resources Research, 2016, 52, 456-470.	1.7	37
119	Hydroclimatic controls on non-stationary stream water ages in humid tropical catchments. Journal of Hydrology, 2016, 542, 231-240.	2.3	19
120	Visualization of spatial patterns of connectivity and runoff ages derived from a tracerâ€aided model. Hydrological Processes, 2016, 30, 4893-4895.	1.1	9
121	Modelling storageâ€driven connectivity between landscapes and riverscapes: towards a simple framework for longâ€ŧerm ecohydrological assessment. Hydrological Processes, 2016, 30, 2482-2497.	1.1	21
122	Using high resolution tracer data to constrain water storage, flux and age estimates in a spatially distributed rainfallâ€runoff model. Hydrological Processes, 2016, 30, 4761-4778.	1.1	69
123	Linking highâ€frequency DOC dynamics to the age of connected water sources. Water Resources Research, 2016, 52, 5232-5247.	1.7	62
124	Using geophysical surveys to test tracerâ€based storage estimates in headwater catchments. Hydrological Processes, 2016, 30, 4434-4445.	1.1	33
125	Hydroclimatic influences on non-stationary transit time distributions in a boreal headwater catchment. Journal of Hydrology, 2016, 543, 7-16.	2.3	25
126	Heat-based hyporheic flux calculations in heterogeneous salmon spawning gravels. Aquatic Sciences, 2016, 78, 203-213.	0.6	18

#	Article	IF	CITATIONS
127	Influence of groundwater chemistry on hyporheic invertebrate assemblages is revealed by fine-scale sampling. Fundamental and Applied Limnology, 2016, 187, 207-221.	0.4	5
128	Identifying runâ€off contributions during meltâ€induced runâ€off events in a glacierized alpine catchment. Hydrological Processes, 2016, 30, 343-364.	1.1	81
129	Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high-resolution isotope data. Water Resources Research, 2015, 51, 7759-7776.	1.7	134
130	A coupled hydrology–biogeochemistry model to simulate dissolved organic carbon exports from a permafrostâ€influenced catchment. Hydrological Processes, 2015, 29, 5383-5396.	1.1	29
131	A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters using stable isotopes and conceptual runoff models. Hydrological Processes, 2015, 29, 5153-5173.	1.1	57
132	Connecting precipitation inputs and soil flow pathways to stream water in contrasting boreal catchments. Hydrological Processes, 2015, 29, 3546-3555.	1.1	74
133	Landscape influence on small-scale water temperature variations in a moorland catchment. Hydrological Processes, 2015, 29, 3098-3111.	1.1	15
134	Ecohydrological separation in wet, low energy northern environments? A preliminary assessment using different soil water extraction techniques. Hydrological Processes, 2015, 29, 5139-5152.	1.1	100
135	Scale-dependent groundwater contributions influence patterns of winter baseflow stream chemistry in boreal catchments. Journal of Geophysical Research C: Biogeosciences, 2015, 120, 847-858.	1.3	66
136	Resistance and resilience to droughts: hydropedological controls on catchment storage and runâ€off response. Hydrological Processes, 2015, 29, 4579-4593.	1.1	33
137	Advancing tracerâ€aided rainfall–runoff modelling: a review of progress, problems and unrealised potential. Hydrological Processes, 2015, 29, 5227-5240.	1.1	120
138	Spatial aggregation of timeâ€variant stream water ages in urbanizing catchments. Hydrological Processes, 2015, 29, 3038-3050.	1.1	27
139	Conceptual modelling to assess how the interplay of hydrological connectivity, catchment storage and tracer dynamics controls nonstationary water age estimates. Hydrological Processes, 2015, 29, 2956-2969.	1.1	95
140	Tracerâ€based assessment of flow paths, storage and runoff generation in northern catchments: a review. Hydrological Processes, 2015, 29, 3475-3490.	1.1	145
141	The Isotope Hydrology of a Large River System Regulated for Hydropower. River Research and Applications, 2015, 31, 335-349.	0.7	21
142	Baseflow dynamics: Multi-tracer surveys to assess variable groundwater contributions to montane streams under low flows. Journal of Hydrology, 2015, 527, 1021-1033.	2.3	60
143	Modelling landscape controls on dissolved organic carbon sources and fluxes to streams. Biogeochemistry, 2015, 122, 361-374.	1.7	77
144	The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments. Hydrological Processes, 2015, 29, 1844-1860.	1.1	87

#	Article	IF	CITATIONS
145	Conceptual Modelling to Assess Hydrological Impacts and Evaluate Environmental Flow Scenarios in Montane River Systems Regulated for Hydropower. River Research and Applications, 2015, 31, 1066-1081.	0.7	18
146	Do catchment characteristics explain differences in coherence and trends in hydroclimatic behaviour in an upland region?. Hydrology Research, 2014, 45, 817-837.	1.1	0
147	ASSESSING THE CUMULATIVE IMPACTS OF HYDROPOWER REGULATION ON THE FLOW CHARACTERISTICS OF A LARGE ATLANTIC SALMON RIVER SYSTEM. River Research and Applications, 2014, 30, 456-475.	0.7	20
148	A comparison of wetness indices for the prediction of observed connected saturated areas under contrasting conditions. Earth Surface Processes and Landforms, 2014, 39, 399-413.	1.2	62
149	Controls on the distribution of channel reach morphology in selectively glaciated catchments. Geomorphology, 2014, 211, 121-133.	1.1	10
150	Application of a linear regression model to assess the influence of urbanised areas and grazing pastures on the microbiological quality of rural streams. Environmental Monitoring and Assessment, 2014, 186, 7141-7155.	1.3	18
151	Integrating parsimonious models of hydrological connectivity and soil biogeochemistry to simulate stream DOC dynamics. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 1030-1047.	1.3	35
152	Developing a consistent processâ€based conceptualization of catchment functioning using measurements of internal state variables. Water Resources Research, 2014, 50, 3481-3501.	1.7	73
153	Projecting climate change impacts on stream flow regimes with tracer-aided runoff models - preliminary assessment of heterogeneity at the mesoscale. Hydrological Processes, 2014, 28, 545-558.	1.1	24
154	Influence of lowland aquifers and anthropogenic impacts on the isotope hydrology of contrasting mesoscale catchments. Hydrological Processes, 2014, 28, 793-808.	1.1	12
155	Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions. Water Resources Research, 2014, 50, 969-985.	1.7	216
156	Assessing urbanization impacts on catchment transit times. Geophysical Research Letters, 2014, 41, 442-448.	1.5	33
157	INFLUENCE OF SCALE ON THERMAL CHARACTERISTICS IN A LARGE MONTANE RIVER BASIN. River Research and Applications, 2013, 29, 403-419.	0.7	47
158	Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments. Water Resources Research, 2013, 49, 6194-6207.	1.7	59
159	Spatial delineation of groundwater–surface water interactions through intensive inâ€stream profiling. Hydrological Processes, 2013, 27, 628-634.	1.1	11
160	Influence of contrasting riparian forest cover on stream temperature dynamics in salmonid spawning and nursery streams. Ecohydrology, 2013, 6, 380-392.	1.1	25
161	Modeling the dynamics of metabolism in montane streams using continuous dissolved oxygen measurements. Water Resources Research, 2013, 49, 5260-5275.	1.7	13
162	Catchments on the cusp? Structural and functional change in northern ecohydrology. Hydrological Processes, 2013, 27, 766-774.	1.1	55

#	Article	IF	CITATIONS
163	Catchments in the future North: interdisciplinary science for sustainable management in the 21 st Century. Hydrological Processes, 2013, 27, 635-639.	1.1	8
164	Process realism: flow paths and storage. , 2013, , 53-69.		6
165	Will catchment characteristics moderate the projected effects of climate change on flow regimes in the Scottish Highlands?. Hydrological Processes, 2013, 27, 687-699.	1.1	43
166	Change in winter climate will affect dissolved organic carbon and water fluxes in midâ€ŧoâ€high latitude catchments. Hydrological Processes, 2013, 27, 700-709.	1.1	35
167	Potential effects of climate change on streambed scour and risks to salmonid survival in snowâ€dominated mountain basins. Hydrological Processes, 2013, 27, 750-765.	1.1	70
168	What can flux tracking teach us about water age distribution patterns and their temporal dynamics?. Hydrology and Earth System Sciences, 2013, 17, 533-564.	1.9	217
169	Land use and hydroclimatic influences on Faecal Indicator Organisms in two large Scottish catchments: Towards land use-based models as screening tools. Science of the Total Environment, 2012, 434, 110-122.	3.9	19
170	Can time domain and source area tracers reduce uncertainty in rainfallâ€runoff models in larger heterogeneous catchments?. Water Resources Research, 2012, 48, .	1.7	37
171	Do timeâ€variable tracers aid the evaluation of hydrological model structure? A multimodel approach. Water Resources Research, 2012, 48, .	1.7	86
172	Modelling the impacts of land-cover change on streamflow dynamics of a tropical rainforest headwater catchment. Hydrological Sciences Journal, 2012, 57, 1543-1561.	1.2	37
173	Spatial and temporal variability of Atlantic salmon (Salmo salar L.) spawning activity in braided river channels: a preliminary assessment. Aquatic Sciences, 2012, 74, 571-586.	0.6	4
174	Hydroclimatic and hydrochemical controls on Plecoptera diversity and distribution in northern freshwater ecosystems. Hydrobiologia, 2012, 693, 39-53.	1.0	8
175	Incorporating hydromorphology in strategic approaches to managing flows for salmonids. Fisheries Management and Ecology, 2012, 19, 490-499.	1.0	10
176	The influence of hydrology and hydraulics on salmonids between spawning and emergence: implications for the management of flows in regulated rivers. Fisheries Management and Ecology, 2012, 19, 464-474.	1.0	45
177	Linking metrics of hydrological function and transit times to landscape controls in a heterogeneous mesoscale catchment. Hydrological Processes, 2012, 26, 405-420.	1.1	49
178	Highâ€frequency storm event isotope sampling reveals timeâ€variant transit time distributions and influence of diurnal cycles. Hydrological Processes, 2012, 26, 308-316.	1.1	96
179	Topographic, pedologic and climatic interactions influencing streamflow generation at multiple catchment scales. Hydrological Processes, 2012, 26, 3858-3874.	1.1	21
180	Using time domain and geographic source tracers to conceptualize streamflow generation processes in lumped rainfallâ€runoff models. Water Resources Research, 2011, 47, .	1.7	86

#	Article	IF	CITATIONS
181	Characterisation of channel reach morphology and associated controls in deglaciated montane catchments in the Cairngorms, Scotland. Geomorphology, 2011, 132, 176-186.	1.1	17
182	Spatial association of nest construction by brown trout Salmo trutta. Journal of Fish Biology, 2011, 78, 713-725.	0.7	11
183	Relative influence of upland and lowland headwaters on the isotope hydrology and transit times of larger catchments. Journal of Hydrology, 2011, 400, 438-447.	2.3	51
184	Using hydrochemical tracers to conceptualise hydrological function in a larger scale catchment draining contrasting geologic provinces. Journal of Hydrology, 2011, 408, 164-177.	2.3	25
185	Source distribution modelling for endâ€member mixing in hydrology. Environmetrics, 2011, 22, 921-932.	0.6	4
186	Sensitivity of mean transit time estimates to model conditioning and data availability. Hydrological Processes, 2011, 25, 980-990.	1.1	62
187	Seasonal controls on DOC dynamics in nested upland catchments in NE Scotland. Hydrological Processes, 2011, 25, 1647-1658.	1.1	48
188	Storage as a Metric of Catchment Comparison. Hydrological Processes, 2011, 25, 3364-3371.	1.1	142
189	Modelling catchmentâ€scale water storage dynamics: reconciling dynamic storage with tracerâ€inferred passive storage. Hydrological Processes, 2011, 25, 3924-3936.	1.1	125
190	Catchmentâ€scale estimates of flow path partitioning and water storage based on transit time and runoff modelling. Hydrological Processes, 2011, 25, 3960-3976.	1.1	64
191	Using lumped conceptual rainfall–runoff models to simulate daily isotope variability with fractionation in a nested mesoscale catchment. Advances in Water Resources, 2011, 34, 383-394.	1.7	40
192	Is Interstitial Velocity a Good Predictor of Salmonid Embryo Survival?. Transactions of the American Fisheries Society, 2011, 140, 898-904.	0.6	12
193	Evolution of the spatial and temporal characteristics of the isotope hydrology of a montane river basin. Hydrological Sciences Journal, 2011, 56, 426-442.	1.2	8
194	Towards a simple dynamic process conceptualization in rainfall–runoff models using multi riteria calibration and tracers in temperate, upland catchments. Hydrological Processes, 2010, 24, 260-275.	1.1	60
195	Catchment transit times and landscape controls—does scale matter?. Hydrological Processes, 2010, 24, 117-125.	1.1	85
196	Transit time distributions of a conceptual model: their characteristics and sensitivities. Hydrological Processes, 2010, 24, 1719-1729.	1.1	56
197	Are transit times useful processâ€based tools for flow prediction and classification in ungauged basins in montane regions?. Hydrological Processes, 2010, 24, 1685-1696.	1.1	29
198	lsotopic and geochemical tracers reveal similarities in transit times in contrasting mesoscale catchments. Hydrological Processes, 2010, 24, 1211-1224.	1.1	36

6

#	Article	IF	CITATIONS
199	Comparing chloride and water isotopes as hydrological tracers in two Scottish catchments. Hydrological Processes, 2010, 24, 1631-1645.	1.1	121
200	Generality of fractal 1/f scaling in catchment tracer time series, and its implications for catchment travel time distributions. Hydrological Processes, 2010, 24, 1660-1671.	1.1	134
201	Storm flow and baseflow response to reduced acid deposition—using Bayesian compositional analysis in hydrograph separation with changing end members. Hydrological Processes, 2010, 24, 2300-2312.	1.1	10
202	Thermal regimes in a large upland salmon river: a simple model to identify the influence of landscape controls and climate change on maximum temperatures. Hydrological Processes, 2010, 24, 3374-3391.	1.1	96
203	Assessing the value of highâ€resolution isotope tracer data in the stepwise development of a lumped conceptual rainfall–runoff model. Hydrological Processes, 2010, 24, 2335-2348.	1.1	67
204	How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrological Processes, 2010, 24, 1745-1754.	1.1	276
205	Spatial distribution of transit times in montane catchments: conceptualization tools for management. Hydrological Processes, 2010, 24, 3283-3288.	1.1	24
206	Inter omparison of hydro limatic regimes across northern catchments: synchronicity, resistance and resilience. Hydrological Processes, 2010, 24, 3591-3602.	1.1	103
207	Gamma distribution models for transit time estimation in catchments: Physical interpretation of parameters and implications for timeâ€variant transit time assessment. Water Resources Research, 2010, 46, .	1.7	146
208	Characterizing Pb Mobilization from Upland Soils to Streams Using ²⁰⁶ Pb/ ²⁰⁷ Pb Isotopic Ratios. Environmental Science & Technology, 2010, 44, 243-249.	4.6	32
209	Using long-term data sets to understand transit times in contrasting headwater catchments. Journal of Hydrology, 2009, 367, 237-248.	2.3	128
210	How does landscape structure influence catchment transit time across different geomorphic provinces?. Hydrological Processes, 2009, 23, 945-953.	1.1	207
211	Interâ€catchment comparison to assess the influence of topography and soils on catchment transit times in a geomorphic province; the Cairngorm mountains, Scotland. Hydrological Processes, 2009, 23, 1874-1886.	1.1	115
212	Seasonality of <i>ep</i> CO ₂ at different scales along an integrated river continuum within the Dee basin, NE Scotland. Hydrological Processes, 2009, 23, 2929-2942.	1.1	20
213	Tracers and transit times: windows for viewing catchment scale storage?. Hydrological Processes, 2009, 23, 3503-3507.	1.1	90
214	Fine scale variability of hyporheic hydrochemistry in salmon spawning gravels with contrasting groundwater-surface water interactions. Hydrogeology Journal, 2009, 17, 161-174.	0.9	38
215	Seasonal and interâ€annual variability in hyporheic water quality revealed by continuous monitoring in a salmon spawning stream. River Research and Applications, 2009, 25, 1304-1319.	0.7	50

216 British and Irish Rivers. , 2009, , 381-419.

#	Article	IF	CITATIONS
217	A new method to identify the fluvial regimes used by spawning salmonids. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66, 1404-1408.	0.7	16
218	Regionalization of transit time estimates in montane catchments by integrating landscape controls. Water Resources Research, 2009, 45, .	1.7	136
219	Assessing the vulnerability of riparian vegetation to invasion by <i>Mimulus guttatus</i> : relative importance of biotic and abiotic variables in determining species occurrence and abundance. Diversity and Distributions, 2008, 14, 412-421.	1.9	27
220	Influence of hydrology and seasonality on DOC exports from three contrasting upland catchments. Biogeochemistry, 2008, 90, 93-113.	1.7	150
221	Influence of hydrological regimes on the preâ€spawning entry of Atlantic salmon (<i>Salmo salar L.</i>) into an upland river. River Research and Applications, 2008, 24, 528-542.	0.7	34
222	Does the incorporation of process conceptualization and tracer data improve the structure and performance of a simple rainfallâ€runoff model in a Scottish mesoscale catchment?. Hydrological Processes, 2008, 22, 2461-2474.	1.1	27
223	The influence of riparian woodland on stream temperatures: implications for the performance of juvenile salmonids. Hydrological Processes, 2008, 22, 968-979.	1.1	85
224	A comparison of forest and moorland stream microclimate, heat exchanges and thermal dynamics. Hydrological Processes, 2008, 22, 919-940.	1.1	131
225	Catchment data for process conceptualization: simply not enough?. Hydrological Processes, 2008, 22, 2057-2061.	1.1	74
226	Conceptualizing catchment processes: simply too complex?. Hydrological Processes, 2008, 22, 1727-1730.	1.1	86
227	Conceptualization in catchment modelling: simply learning?. Hydrological Processes, 2008, 22, 2389-2393.	1.1	65
228	Interpretation of homogeneity in δ ¹⁸ O signatures of stream water in a nested subâ€catchment system in northâ€east Scotland. Hydrological Processes, 2008, 22, 4767-4782.	1.1	43
229	Sources of baseflow in larger catchments – Using tracers to develop a holistic understanding of runoff generation. Journal of Hydrology, 2008, 359, 287-302.	2.3	101
230	Towards simple approaches for mean residence time estimation in ungauged basins using tracers and soil distributions. Journal of Hydrology, 2008, 363, 60-74.	2.3	91
231	Inferring groundwater influences on surface water in montane catchments from hydrochemical surveys of springs and streamwaters. Journal of Hydrology, 2007, 333, 199-213.	2.3	118
232	Stable Isotope Analysis Reveals Lower-Order River Dissolved Inorganic Carbon Pools Are Highly Dynamic. Environmental Science & Technology, 2007, 41, 6156-6162.	4.6	77
233	Assessing nested hydrological and hydrochemical behaviour of a mesoscale catchment using continuous tracer data. Journal of Hydrology, 2007, 336, 430-443.	2.3	39
234	Influence of forestry, environmental change and climatic variability on the hydrology, hydrochemistry and residence times of upland catchments. Journal of Hydrology, 2007, 346, 93-111.	2.3	89

#	Article	IF	CITATIONS
235	Conceptualization of runoff processes using a geographical information system and tracers in a nested mesoscale catchment. Hydrological Processes, 2007, 21, 1289-1307.	1.1	173
236	Connectivity between landscapes and riverscapes—a unifying theme in integrating hydrology and ecology in catchment science?. Hydrological Processes, 2007, 21, 1385-1389.	1.1	163
237	Role of discharge and temperature variation in determining invertebrate community structure in a regulated river. River Research and Applications, 2007, 23, 651-669.	0.7	70
238	Discharge and hydraulic interactions in contrasting channel morphologies and their influence on site utilization by spawning Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63, 2567-2585.	0.7	43
239	Water source dynamics in a glacierized alpine river basin (Taillon-Gabiétous, French Pyrénées). Water Resources Research, 2006, 42, .	1.7	53
240	The role of science in environmental policy: an examination of the local context. Land Use Policy, 2006, 23, 161-169.	2.5	15
241	Runoff processes, stream water residence times and controlling landscape characteristics in a mesoscale catchment: An initial evaluation. Journal of Hydrology, 2006, 325, 197-221.	2.3	225
242	Iron and manganese cycling in the storm runoff of a Scottish upland catchment. Journal of Hydrology, 2006, 326, 59-78.	2.3	32
243	The dispersal characteristics of the invasive plant Mimulus guttatus and the ecological significance of increased occurrence of high-flow events. Journal of Ecology, 2006, 94, 1080-1091.	1.9	129
244	High-frequency logging technologies reveal state-dependent hyporheic process dynamics: implications for hydroecological studies. Hydrological Processes, 2006, 20, 615-622.	1.1	67
245	Scaling up and out in runoff process understanding: insights from nested experimental catchment studies. Hydrological Processes, 2006, 20, 2461-2465.	1.1	81
246	A hierarchical model for compositional data analysis. Journal of Agricultural, Biological, and Environmental Statistics, 2005, 10, 19-34.	0.7	20
247	Stable isotope tracers as diagnostic tools in upscaling flow path understanding and residence time estimates in a mountainous mesoscale catchment. Hydrological Processes, 2005, 19, 2291-2307.	1.1	85
248	The relationship between sediment mobilisation and the entry of Baetis mayflies into the water column in a laboratory flume. Hydrobiologia, 2005, 533, 115-122.	1.0	28
249	An Approach to Assessing Hydrological Influences on Feeding Opportunities of Juvenile Atlantic Salmon (Salmo salar): A Case Study of Two Contrasting years in a Small, Nursery Stream. Hydrobiologia, 2005, 549, 65-77.	1.0	28
250	Catchment-scale controls on groundwater-surface water interactions in the hyporheic zone: implications for salmon embryo survival. River Research and Applications, 2005, 21, 977-989.	0.7	97
251	PHABSIM modelling of Atlantic salmon spawning habitat in an upland stream: testing the influence of habitat suitability indices on model output. River Research and Applications, 2005, 21, 1021-1034.	0.7	83
252	Using stable isotope tracers to assess hydrological flow paths, residence times and landscape influences in a nested mesoscale catchment. Hydrology and Earth System Sciences, 2005, 9, 139-155.	1.9	136

#	Article	IF	CITATIONS
253	Variability in stream discharge and temperature: a preliminary assessment of the implications for juvenile and spawning Atlantic salmon. Hydrology and Earth System Sciences, 2005, 9, 193-208.	1.9	50
254	Groundwater–surface water interactions in upland Scottish rivers: hydrological, hydrochemical and ecological implications. Scottish Journal of Geology, 2005, 41, 39-49.	0.1	55
255	The influence of riparian woodland on the spatial and temporal variability of stream water temperatures in an upland salmon stream. Hydrology and Earth System Sciences, 2004, 8, 449-459.	1.9	76
256	Heat exchanges and temperatures within a salmon spawning stream in the Cairngorms, Scotland: seasonal and sub-seasonal dynamics. River Research and Applications, 2004, 20, 635-652.	0.7	125
257	Groundwater–surface-water interactions in a braided river: a tracer-based assessment. Hydrological Processes, 2004, 18, 1315-1332.	1.1	68
258	Hydrological influences on hyporheic water quality: implications for salmon egg survival. Hydrological Processes, 2004, 18, 1543-1560.	1.1	157
259	Long-residence groundwater effects on incubating salmonid eggs: low hyporheic oxygen impairs embryo development. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 2278-2287.	0.7	62
260	Linking channel geomorphic characteristics to spatial patterns of spawning activity and discharge use by Atlantic salmon (Salmo salar L.). Geomorphology, 2004, 60, 21-35.	1.1	94
261	Using tracers to upscale flow path understanding in mesoscale mountainous catchments: two examples from Scotland. Journal of Hydrology, 2004, 291, 174-196.	2.3	92
262	Parameter identification for conceptual modelling using combined behavioural knowledge. Hydrological Processes, 2003, 17, 329-343.	1.1	21
263	Towards integrating tracer studies in conceptual rainfall-runoff models: recent insights from a sub-arctic catchment in the Cairngorm Mountains, Scotland. Hydrological Processes, 2003, 17, 403-416.	1.1	33
264	Heterogeneity in ground water-surface water interactions in the hyporheic zone of a salmonid spawning stream. Hydrological Processes, 2003, 17, 601-617.	1.1	73
265	A tracer-based assessment of hydrological pathways at different spatial scales in a mesoscale Scottish catchment. Hydrological Processes, 2003, 17, 759-777.	1.1	81
266	Survival of salmonid eggs in a degraded gravel-bed stream: effects of groundwater-surface water interactions. River Research and Applications, 2003, 19, 303-316.	0.7	122
267	Identifying and assessing uncertainty in hydrological pathways: a novel approach to end member mixing in a Scottish agricultural catchment. Journal of Hydrology, 2003, 274, 109-128.	2.3	102
268	Gaining 'Ecological Legitimacy': The development of sustainability consciousness in the Flow Country, northern Scotland. Local Environment, 2002, 7, 81-95.	1.1	2
269	Hydraulic and sedimentary controls on the availability and use of Atlantic salmon (Salmo salar) spawning habitat in the River Dee system, north-east Scotland. Geomorphology, 2002, 45, 291-308.	1.1	74
270	Hydrology in Scotland: towards a scientific basis for the sustainable management of freshwater resources—foreword to thematic issue. Science of the Total Environment, 2002, 294, 3-11.	3.9	4

#	Article	IF	CITATIONS
271	Water quality in the Scottish uplands: a hydrological perspective on catchment hydrochemistry. Science of the Total Environment, 2002, 294, 73-94.	3.9	53
272	Hydrological controls on nutrient concentrations and fluxes in agricultural catchments. Science of the Total Environment, 2002, 294, 95-110.	3.9	90
273	Hydrological science, society and the sustainable management of Scottish freshwaters resources in the 21st century. Science of the Total Environment, 2002, 294, 213-220.	3.9	4
274	Thermal regime in the hyporheic zone of two contrasting salmonid spawning streams: ecological and hydrological implications. Fisheries Management and Ecology, 2002, 9, 1-10.	1.0	48
275	Assessing discharge use by spawning Atlantic salmon: A comparison of discharge electivity indices and PHABSIM simulations. River Research and Applications, 2002, 18, 383-395.	0.7	42
276	On modelling the effects of afforestation on acidification in heterogeneous catchments at different spatial and temporal scales. Journal of Hydrology, 2001, 250, 149-169.	2.3	29
277	Foreword to the special volume: environmental change, land management and water quality in Scotland. Science of the Total Environment, 2001, 265, 3-6.	3.9	3
278	The environmental context for water quality variation in Scotland. Science of the Total Environment, 2001, 265, 7-14.	3.9	10
279	Variation in river water temperatures in an upland stream over a 30-year period. Science of the Total Environment, 2001, 265, 195-207.	3.9	141
280	Modelling instream nitrogen variability in the Dee catchment, NE Scotland. Science of the Total Environment, 2001, 265, 229-252.	3.9	33
281	Hydrogeochemistry of groundwater in coastal wetlands: implications for coastal conservation in Scotland. Science of the Total Environment, 2001, 265, 269-280.	3.9	26
282	Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: a preliminary assessment. Science of the Total Environment, 2001, 265, 295-307.	3.9	187
283	Environmental change, land use and water quality in Scotland: current issues and future prospects. Science of the Total Environment, 2001, 265, 387-394.	3.9	22
284	Seasonality, water quality trends and biological responses in four streams in the Cairngorm Mountains, Scotland. Hydrology and Earth System Sciences, 2001, 5, 433-450.	1.9	40
285	Developing ecologically acceptable river flow regimes: a case study of Kielder reservoir and the Kielder water transfer system. Fisheries Management and Ecology, 2001, 8, 463-485.	1.0	45
286	Hydrochemistry of the hyporheic zone in salmon spawning gravels: a preliminary assessment in a degraded agricultural stream. River Research and Applications, 2001, 17, 651-665.	1.2	61
287	Invertebrate communities and hydrological variation in Cairngorm mountain streams. Hydrobiologia, 2001, 462, 205-219.	1.0	40
288	Flow Requirements of Spawning Atlantic Salmon in an Upland Stream: Implications for Waterâ€Resource Management. Water and Environment Journal, 2001, 15, 1-8.	1.0	39

#	Article	IF	CITATIONS
289	Riparian zone influence on stream water chemistry at different spatial scales: a GIS-based modelling approach, an example for the Dee, NE Scotland. Science of the Total Environment, 2001, 280, 173-193.	3.9	80
290	Groundwater in headwaters: hydrological and ecological significance. Geological Society Special Publication, 2000, 182, 19-34.	0.8	4
291	Impacts of an inter-basin water transfer: distribution and abundance ofMicronecta poweri (Insecta:) Tj ETQq1 1 0 Ecosystems, 2000, 10, 103-115.	784314 r 0.9	gBT /Overlo 15
292	Isotope hydrology of the Allt a' Mharcaidh catchment, Cairngorms, Scotland: implications for hydrological pathways and residence times. Hydrological Processes, 2000, 14, 747-762.	1.1	171
293	Modelling water chemistry for a major Scottish river from catchment attributes. Journal of Applied Ecology, 2000, 37, 171-184.	1.9	60
294	Peatland conservation in Buchan, northâ€east Scotland: The historic context and contemporary issues. Scottish Geographical Journal, 2000, 116, 283-298.	0.4	7
295	Modelling the potential impact of climate change on a shallow coastal aquifer in northern Scotland. Geological Society Special Publication, 2000, 182, 191-204.	0.8	8
296	Hydrogeochemsitry of montane springs and their influence on streams in the Cairngorm mountains, Scotland. Hydrology and Earth System Sciences, 1999, 3, 409-419.	1.9	27
297	Interâ€Basin Water Transfers and Drought Management in the Kielder/Derwent System. Water and Environment Journal, 1999, 13, 213-223.	1.0	17
298	A novel index of susceptibility of rivers and their catchments to acidification in regions subject to a maritime influence. Applied Geochemistry, 1999, 14, 1093-1099.	1.4	13
299	Modelling streamwater quality under varying hydrological conditions at different spatial scales. Journal of Hydrology, 1999, 217, 266-283.	2.3	69
300	Modelling the evolution of minewater pollution at Polkemmet Colliery, Almond catchment, Scotland. Quarterly Journal of Engineering Geology and Hydrogeology, 1999, 32, 351-362.	0.8	17
301	Hydrogeochemistry of shallow groundwater in an upland Scottish catchment. Hydrological Processes, 1998, 12, 1111-1127.	1.1	126
302	Hydraulic and sedimentary characteristics of habitat utilized by Atlantic salmon for spawning in the Girnock Burn, Scotland. Fisheries Management and Ecology, 1998, 5, 241-254.	1.0	77
303	Influence of snow on the hydrology and hydrochemistry of the Allt a' Mharcaidh, Cairngorm mountains, Scotland. Science of the Total Environment, 1998, 217, 59-70.	3.9	35
304	Factors regulating the spatial and temporal distribution of solute concentrations in a major river system in NE Scotland. Science of the Total Environment, 1998, 221, 93-110.	3.9	67
305	Modelling river-aquifer interactions at the Spey Abstraction Scheme, Scotland: implications for aquifer protection. Quarterly Journal of Engineering Geology and Hydrogeology, 1997, 30, 123-136.	0.8	18
306	The prediction and management of water quality in a relatively unpolluted major Scottish catchment: current issues and experimental approaches. Science of the Total Environment, 1997, 194-195, 419-435.	3.9	72

#	Article	IF	CITATIONS
307	Reversibility of stream acidification in the Cairngorm region of Scotland. Journal of Hydrology, 1997, 195, 291-311.	2.3	35
308	Risk Assessment for a Proposed Groundwater Abstraction Scheme in Strathmore, North-East Scotland: a Modelling Approach. Water and Environment Journal, 1997, 11, 47-55.	1.0	7
309	Hydrogeology of a restored coastal dune system in northeastern Scotland. Journal of Coastal Conservation, 1997, 3, 143-154.	0.7	6
310	Hydrogeology of a restored coastal dune system in northeastern Scotland. Journal of Coastal Conservation, 1997, 3, 143-154.	0.7	3
311	Long-term trends in stream chemistry and biology in North-East Scotland: Evidence for recovery. Water, Air, and Soil Pollution, 1995, 85, 689-694.	1.1	17
312	The Chemistry of Throughfall, Stemflow and Soil Water Beneath Oak Woodland and Moorland Vegetation in Upland Wales. Chemistry and Ecology, 1994, 9, 115-134.	0.6	15
313	Influence of soil hydrological pathways on stream aluminium chemistry at Llyn Brianne, mid-wales. Environmental Pollution, 1993, 81, 51-60.	3.7	26
314	Modelling hydrological processes and aluminium leaching in an acid soil at Llyn Brianne, Mid-Wales. Journal of Hydrology, 1992, 138, 409-429.	2.3	24