Laurent Piccolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9141746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective oxidation of CO over model gold-based catalysts in the presence of H. Journal of Catalysis, 2005, 230, 476-483.	3.1	151
2	CO chemisorption on Au(110) investigated under elevated pressures by polarized reflection absorption infrared spectroscopy and scanning tunneling microscopy. Surface Science, 2002, 521, L639-L644.	0.8	107
3	Degradation Mechanisms of Oxygen Evolution Reaction Electrocatalysts: A Combined Identical-Location Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy Study. ACS Catalysis, 2019, 9, 4688-4698.	5.5	100
4	Pd–Au single-crystal surfaces: Segregation properties and catalytic activity in the selective hydrogenation of 1,3-butadiene. Surface Science, 2005, 592, 169-181.	0.8	97
5	The adsorption of CO on Au(111) at elevated pressures studied by STM, RAIRS and DFT calculations. Surface Science, 2004, 566-568, 995-1000.	0.8	96
6	Dynamics of Single Pt Atoms on Alumina during CO Oxidation Monitored by <i>Operando</i> X-ray and Infrared Spectroscopies. ACS Catalysis, 2019, 9, 5752-5759.	5.5	94
7	The CO oxidation kinetics on supported Pd model catalysts: A molecular beam/in situ time-resolved infrared reflection absorption spectroscopy study. Journal of Chemical Physics, 2001, 114, 4669.	1.2	87
8	Remarkable Carbon Dioxide Hydrogenation to Ethanol on a Palladium/Iron Oxide Singleâ€Atom Catalyst. ChemCatChem, 2018, 10, 2365-2369.	1.8	82
9	On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation. Journal of Catalysis, 2009, 268, 384-389.	3.1	81
10	Synergy between hydrogen and ceria in Pt-catalyzed CO oxidation: An investigation on Pt–CeO2 catalysts synthesized by solution combustion. Applied Catalysis B: Environmental, 2016, 197, 2-13.	10.8	81
11	NO–CO reaction kinetics on Pd/MgO model catalysts: morphology and support effects. Journal of Molecular Catalysis A, 2001, 167, 181-190.	4.8	76
12	Tuning the shape of nanoparticles to control their catalytic properties: selective hydrogenation of 1,3-butadiene on Pd/Al2O3. Physical Chemistry Chemical Physics, 2008, 10, 5504.	1.3	74
13	Trends in the CO oxidation and PROX performances of the platinum-group metals supported on ceria. Catalysis Today, 2015, 253, 106-114.	2.2	71
14	Oxygen Evolution Reaction Activity and Stability Benchmarks for Supported and Unsupported IrO _{<i>x</i>} Electrocatalysts. ACS Catalysis, 2021, 11, 4107-4116.	5.5	69
15	Atmosphere-dependent stability and mobility of catalytic Pt single atoms and clusters on γ-Al ₂ O ₃ . Nanoscale, 2019, 11, 6897-6904.	2.8	66
16	Promotional effect of H2 on CO oxidation over Au/TiO2 studied by operando infrared spectroscopy. Applied Catalysis B: Environmental, 2009, 86, 190-195.	10.8	65
17	Insights into activation, deactivation and hydrogen-induced promotion of a Au/TiO2 reference catalyst in CO oxidation. Journal of Catalysis, 2006, 239, 307-312.	3.1	64
18	Titania-supported gold-based nanoparticles efficiently catalyze the hydrodeoxygenation of guaiacol. Journal of Catalysis, 2016, 344, 136-140.	3.1	62

#	Article	IF	CITATIONS
19	Thiotolerant Ir/SiO2–Al2O3 bifunctional catalysts: Effect of metal–acid site balance on tetralin hydroconversion. Journal of Catalysis, 2011, 278, 253-265.	3.1	61
20	Influence of Pt particle size and reaction phase on the photocatalytic performances of ultradispersed Pt/TiO2 catalysts for hydrogen evolution. Journal of Catalysis, 2019, 375, 155-163.	3.1	61
21	Insight into the free-radical chain mechanism of gold-catalyzed hydrocarbon oxidation reactions in the liquid phase. Catalysis Today, 2007, 122, 284-291.	2.2	58
22	Reactivity of metal nanoclusters: nitric oxide adsorption and CO+NO reaction on Pd/MgO model catalysts. Applied Surface Science, 2000, 162-163, 670-678.	3.1	55
23	Restructuring effects of the chemical environment in metal nanocatalysis and single-atom catalysis. Catalysis Today, 2021, 373, 80-97.	2.2	53
24	Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts. Scientific Reports, 2016, 6, 35226.	1.6	49
25	Nanoalloying Effect in the Preferential Oxidation of CO over Ir–Pd Catalysts. ACS Catalysis, 2012, 2, 2161-2168.	5.5	46
26	H2-induced promotion of CO oxidation over unsupported gold. Catalysis Today, 2008, 138, 43-49.	2.2	44
27	Reaction between CO and a pre-adsorbed oxygen layer on supported palladium clusters. Applied Surface Science, 2000, 164, 156-162.	3.1	42
28	Au–Rh and Au–Pd nanocatalysts supported on rutile titania nanorods: structure and chemical stability. Physical Chemistry Chemical Physics, 2015, 17, 28112-28120.	1.3	42
29	Ultrastable iridium–ceria nanopowders synthesized in one step by solution combustion for catalytic hydrogen production. Journal of Materials Chemistry A, 2014, 2, 19822-19832.	5.2	40
30	Nanoalloying bulk-immiscible iridium and palladium inhibits hydride formation and promotes catalytic performances. Nanoscale, 2014, 6, 9955-9959.	2.8	40
31	Efficient hydrogen production from methane over iridium-doped ceria catalysts synthesized by solution combustion. Applied Catalysis B: Environmental, 2015, 166-167, 580-591.	10.8	39
32	Absorption and oxidation of hydrogen at Pd and Pd–Au (111) surfaces. Surface Science, 2006, 600, 4211-4215.	0.8	38
33	Supported Ir–Pd nanoalloys: Size–composition correlation and consequences on tetralin hydroconversion properties. Journal of Catalysis, 2012, 292, 173-180.	3.1	38
34	Alkene hydrogenation on metal surfaces: Why and when are Pd overlayers more efficient catalysts than bulk Pd?. Journal of Catalysis, 2009, 263, 315-320.	3.1	37
35	Low-Temperature Hydrogen Interaction with Amorphous Molybdenum Sulfides MoS _{<i>x</i>} . Journal of Physical Chemistry C, 2009, 113, 4139-4146.	1.5	37
36	<i>Operando</i> X-ray Absorption Spectroscopy Investigation of Photocatalytic Hydrogen Evolution over Ultradispersed Pt/TiO ₂ Catalysts. ACS Catalysis, 2020, 10, 12696-12705.	5.5	37

#	Article	IF	CITATIONS
37	Molecular beam study of the adsorption and dissociation of NO on Pd clusters supported on MgO(100). Surface Science, 2000, 452, 198-206.	0.8	34
38	Thiotolerant Ir/SiO2–Al2O3 bifunctional catalysts: effect of support acidity on tetralin hydroconversion. Catalysis Science and Technology, 2011, 1, 408.	2.1	34
39	Reactivity of supported metal clusters: the reduction of NO by CO on a Pd/MgO(100) model catalyst. Journal of Physics Condensed Matter, 2002, 14, 4251-4269.	0.7	33
40	Pd8Ni92(110) surface structure from surface X-ray diffraction. Surface evolution under hydrogen and butadiene reactants at elevated pressure. Surface Science, 2005, 587, 229-235.	0.8	32
41	Al13Fe4 selectively catalyzes the hydrogenation of butadiene at room temperature. Chemical Communications, 2013, 49, 9149.	2.2	29
42	Operando study of iridium acetylacetonate decomposition on amorphous silica–alumina for bifunctional catalyst preparation. Physical Chemistry Chemical Physics, 2010, 12, 7812.	1.3	28
43	Pd(111) versus Pd–Au(111) in carbon monoxide oxidation under elevated pressures. Catalysis Letters, 2007, 114, 110-114.	1.4	27
44	A DFT study of molecular adsorption on Au–Rh nanoalloys. Catalysis Science and Technology, 2016, 6, 6916-6931.	2.1	26
45	Mechanism of Tetralin Ring Opening and Contraction over Bifunctional Ir/SiO ₂ â€Al ₂ O ₃ Catalysts. ChemSusChem, 2012, 5, 1717-1723.	3.6	25
46	Sensitivity of CO oxidation toward metal oxidation state in ceria-supported catalysts: an operando DRIFTS-MS study. Catalysis Science and Technology, 2016, 6, 818-828.	2.1	25
47	Catalytic properties of Al ₁₃ TM ₄ complex intermetallics: influence of the transition metal and the surface orientation on butadiene hydrogenation. Science and Technology of Advanced Materials, 2019, 20, 557-567.	2.8	25
48	Monitoring in situ the colloidal synthesis of AuRh/TiO ₂ selective-hydrogenation nanocatalysts. Journal of Materials Chemistry A, 2017, 5, 17360-17367.	5.2	24
49	Tuning Adsorption Energies and Reaction Pathways by Alloying: PdZn versus Pd for CO ₂ Hydrogenation to Methanol. Journal of Physical Chemistry Letters, 2020, 11, 7672-7678.	2.1	24
50	Decalin ring opening over NiWS/SiO 2 -Al 2 O 3 catalysts in the presence of H 2 S. Applied Catalysis A: General, 2016, 512, 43-51.	2.2	23
51	Role of hydrogen absorption in supported Pd nanocatalysts during CO-PROX: Insights from operando X-ray absorption spectroscopy. Applied Catalysis B: Environmental, 2018, 237, 1059-1065.	10.8	23
52	Ultradispersed Mo/TiO ₂ catalysts for CO ₂ hydrogenation to methanol. Green Chemistry, 2021, 23, 7259-7268.	4.6	22
53	Kinetic modeling of the CO oxidation reaction on supported metal clusters. European Physical Journal D, 1999, 9, 415-419.	0.6	21
54	Surface restructuring under gas pressure from first principles: A mechanism for CO-induced removal of theAu(110)â~'(1×2)reconstruction. Physical Review B, 2005, 71, .	1.1	21

#	Article	IF	CITATIONS
55	The partial hydrogenation of butadiene over Al 13 Fe 4 : A surface-science study of reaction and deactivation mechanisms. Journal of Catalysis, 2015, 332, 112-118.	3.1	20
56	Promoting effect of ceria on the performance of NiPd/CeO2–Al2O3catalysts for the selective hydrogenation of 1,3-butadiene in the presence of 1-butene. New Journal of Chemistry, 2018, 42, 11165-11173.	1.4	18
57	Ultradispersed (Co)Mo catalysts with high hydrodesulfurization activity. Applied Catalysis B: Environmental, 2022, 302, 120831.	10.8	18
58	A DFT study of molecular adsorption on titania-supported AuRh nanoalloys. Computational and Theoretical Chemistry, 2017, 1107, 142-151.	1.1	17
59	Discussion on "A comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometry approach for identification of C10 derivatives from decalin―by C. Flego, N. Gigantiello, W.O. Parker, Jr., V. Calemma [J. Chromatogr. A 1216 (2009) 2891]. Journal of Chromatography A, 2010, 1217. 5872-5873.	1.8	16
60	Surface study of the hydrogen-free or preferential oxidation of CO: Iridium vs. platinum. Catalysis Today, 2012, 189, 42-48.	2.2	16
61	Modelling free and oxide-supported nanoalloy catalysts: comparison of bulk-immiscible Pd–Ir and Au–Rh systems and influence of a TiO2 support. Faraday Discussions, 2018, 208, 53-66.	1.6	15
62	Supported Molybdenum Carbide and Nitride Catalysts for Carbon Dioxide Hydrogenation. Frontiers in Chemistry, 2020, 8, 452.	1.8	15
63	Size-dependent hydrogen trapping in palladium nanoparticles. Journal of Materials Chemistry A, 2021, 9, 10354-10363.	5.2	15
64	A versatile elevated-pressure reactor combined with an ultrahigh vacuum surface setup for efficient testing of model and powder catalysts under clean gas-phase conditions. Review of Scientific Instruments, 2013, 84, 094101.	0.6	13
65	Tracking the restructuring of oxidized silver–indium nanoparticles under a reducing atmosphere by environmental HRTEM. Nanoscale, 2017, 9, 13563-13574.	2.8	13
66	Surface Studies of Catalysis by Metals: Nanosize and Alloying Effects. Engineering Materials, 2012, , 369-404.	0.3	12
67	Improving the catalytic performances of metal nanoparticles by combining shape control and encapsulation. Applied Catalysis A: General, 2015, 504, 504-508.	2.2	12
68	Absorbed hydrogen enhances the catalytic hydrogenation activity of Rh-based nanocatalysts. Catalysis Science and Technology, 2018, 8, 2707-2715.	2.1	12
69	Application of a sensitive catalytic reactor to the study of CO oxidation over SrTiO ₃ (100) and BaTiO ₃ /SrTiO ₃ (100) ferroelectric surfaces. Surface and Interface Analysis, 2014, 46, 721-725.	0.8	11
70	Effect of H2S on the mechanisms of naphthene ring opening and isomerization over Ir/NaY: A comparative study of decalin, perhydroindan and butylcyclohexane hydroconversions. Applied Catalysis A: General, 2018, 550, 274-283.	2.2	11
71	From the Surface Structure to Catalytic Properties of Al ₅ Co ₂ (21Ì0): A Study Combining Experimental and Theoretical Approaches. Journal of Physical Chemistry C, 2020, 124, 4552-4562.	1.5	11
72	IrPd nanoalloys: simulations, from surface segregation to local electronic properties. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	10

#	Article	IF	CITATIONS
73	Computational study of the adsorption of benzene and hydrogen onÂpalladium–iridium nanoalloys. Journal of Organometallic Chemistry, 2015, 792, 190-193.	0.8	10
74	Understanding the Mechanisms of Decalin Hydroprocessing Using Comprehensive Two-Dimensional Chromatography. Industrial & Engineering Chemistry Research, 2016, 55, 12516-12523.	1.8	10
75	Selective ring opening of decalin over bifunctional RuS2/zeolite catalysts. Catalysis Today, 2019, 323, 105-111.	2.2	10
76	Catalytic activation of a non-noble intermetallic surface through nanostructuration under hydrogenation conditions revealed by atomistic thermodynamics. Journal of Materials Chemistry A, 2020, 8, 7422-7431.	5.2	10
77	Uncovering the 3 D Structure of Combustionâ€Synthesized Noble Metalâ€Ceria Nanocatalysts. ChemCatChem, 2017, 9, 4607-4613.	1.8	8
78	How the hydrogen sorption properties of palladium are modified through interaction with iridium. Physical Chemistry Chemical Physics, 2017, 19, 32451-32458.	1.3	8
79	Structural Properties of Catalytically Active Bimetallic Gold–Palladium Nanoparticles Synthesized on Rutile Titania Nanorods by Pulsed Laser Deposition. Crystal Growth and Design, 2018, 18, 68-76.	1.4	8
80	Environmental Plasmonic Spectroscopy of Silver–Iron Nanoparticles: Chemical Ordering under Oxidizing and Reducing Conditions. Journal of Physical Chemistry C, 2019, 123, 15693-15706.	1.5	8
81	Chemical order driven morphology of a vicinal surface of Fe3Al(111): an He diffraction and STM study. Surface Science, 2002, 505, 271-284.	0.8	7
82	Structure of the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Pd<mml:mn>8</mml:mn></mml:mi </mml:msub><mml:msub><mml:mi mathvariant="normal">Ni<mml:mn>92</mml:mn></mml:mi </mml:msub><mml:mrow><mml:mo>(</mml:mo><!--</td--><td>1.1 mml:mn>3</td><td>7 110</td></mml:mrow></mml:mrow></mml:math>	1.1 mml:mn>3	7 110
83	surface from first principles. Physical Review B, 2007, 76, . Intermetallic Compounds as Potential Alternatives to Noble Metals in Heterogeneous Catalysis: The Partial Hydrogenation of Butadiene on γâ€Al ₄ Cu ₉ (1 1 0). ChemCatChem, 20 2292-2296.	17,9,	7
84	Unveiling the Ir single atoms as selective active species for the partial hydrogenation of butadiene by <i>operando</i> XAS. Nanoscale, 2022, 14, 7641-7649.	2.8	5
85	Transition metal sulfides on zeolite catalysts for selective ring opening. Catalysis Today, 2021, 377, 187-195.	2.2	4
86	Au-Rh and Au-Pd Nanoalloys supported on well-defined Rutile Titania Nanorods for Aromatics Hydrogenation Applications. Materials Research Society Symposia Proceedings, 2014, 1641, 1.	0.1	3
87	Investigation of the local structure of nanosized rhodium hydride. Journal of Colloid and Interface Science, 2018, 524, 427-433.	5.0	3
88	Thermodynamics of faceted palladium(–gold) nanoparticles supported on rutile titania nanorods studied using transmission electron microscopy. Physical Chemistry Chemical Physics, 2018, 20, 13030-13037.	1.3	3
89	Reactivity and Catalysis by Nanoalloys. , 2020, , 267-345.		2
90	Comparative study of the catalytic hydroconversion of cyclopentane over iridium and platinum single-crystal surfaces. Comptes Rendus Chimie, 2014, 17, 785-789.	0.2	1