Andrea Chincarini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9141713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 2016, 116, 061102.	2.9	8,753
2	GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Physical Review Letters, 2017, 119, 161101.	2.9	6,413
3	Multi-messenger Observations of a Binary Neutron Star Merger [*] . Astrophysical Journal Letters, 2017, 848, L12.	3.0	2,805
4	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	2.9	2,701
5	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	1.5	2,530
6	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	3.0	2,314
7	GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 2019, 9, .	2.8	2,022
8	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	2.9	1,987
9	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	2.9	1,600
10	GW170817: Measurements of Neutron Star Radii and Equation of State. Physical Review Letters, 2018, 121, 161101.	2.9	1,473
11	Tests of General Relativity with GW150914. Physical Review Letters, 2016, 116, 221101.	2.9	1,224
12	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	1.5	1,211
13	GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. Physical Review X, 2021, 11, .	2.8	1,097
14	GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophysical Journal Letters, 2020, 896, L44.	3.0	1,090
15	GW190425: Observation of a Compact Binary Coalescence with Total MassÂâ^1⁄4Â3.4 M _⊙ . Astrophysical Journal Letters, 2020, 892, L3.	3.0	1,049
16	Characterization of the LIGO detectors during their sixth science run. Classical and Quantum Gravity, 2015, 32, 115012.	1.5	1,029
17	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	3.0	968
18	Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Ouantum Gravity, 2010, 27, 173001.	1.5	956

#	Article	IF	CITATIONS
19	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	2.8	898
20	GW190521: A Binary Black Hole Merger with a Total Mass of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>150</mml:mn><mml:mtext> </mml:mtext><mml:mtext> <!--<br-->stretchy="false">⊙</mml:mtext></mml:mrow>. Physical Review Letters, 2020, 125, 101102</mml:math 	mml ææ ext	> <nasada:msub></nasada:msub>
21	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	8.2	808
22	Properties of the Binary Neutron Star Merger GW170817. Physical Review X, 2019, 9, .	2.8	728
23	Properties of the Binary Black Hole Merger GW150914. Physical Review Letters, 2016, 116, 241102.	2.9	673
24	Sensitivity studies for third-generation gravitational wave observatories. Classical and Quantum Gravity, 2011, 28, 094013.	1.5	644
25	ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914. Astrophysical Journal Letters, 2016, 818, L22.	3.0	633
26	Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo. Astrophysical Journal Letters, 2019, 882, L24.	3.0	566
27	Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog. Astrophysical Journal Letters, 2021, 913, L7.	3.0	514
28	Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. Physical Review D, 2019, 100, .	1.6	470
29	GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. Physical Review Letters, 2016, 116, 131103.	2.9	466
30	Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophysical Journal Letters, 2021, 915, L5.	3.0	453
31	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	8.2	447
32	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	8.2	427
33	Properties and Astrophysical Implications of the 150 M _⊙ Binary Black Hole Merger GW190521. Astrophysical Journal Letters, 2020, 900, L13.	3.0	406
34	GW190412: Observation of a binary-black-hole coalescence with asymmetric masses. Physical Review D, 2020, 102, .	1.6	394
35	Tests of General Relativity with GW170817. Physical Review Letters, 2019, 123, 011102.	2.9	370
36	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	1.5	355

#	Article	IF	CITATIONS
37	Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Physical Review D, 2021, 103, .	1.6	338
38	GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. Physical Review D, 2016, 93, .	1.6	315
39	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	1.5	287
40	GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. Physical Review Letters, 2016, 116, 131102.	2.9	269
41	Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge. NeuroImage, 2015, 111, 562-579.	2.1	266
42	Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation, 2012, 7, P03012-P03012.	0.5	257
43	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	2.9	254
44	THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914. Astrophysical Journal Letters, 2016, 833, L1.	3.0	230
45	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	1.5	225
46	LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914. Astrophysical Journal Letters, 2016, 826, L13.	3.0	210
47	Search for the isotropic stochastic background using data from Advanced LIGO's second observing run. Physical Review D, 2019, 100, .	1.6	200
48	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	2.9	194
49	Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run. Physical Review D, 2021, 104, .	1.6	192
50	Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 851, L16.	3.0	189
51	A guide to LIGO–Virgo detector noise and extraction of transient gravitational-wave signals. Classical and Quantum Gravity, 2020, 37, 055002.	1.5	188
52	Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3. Physical Review D, 2012, 85, .	1.6	185
53	Status of the Virgo project. Classical and Quantum Gravity, 2011, 28, 114002.	1.5	171
54	GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences. Physical Review Letters, 2018, 120, 091101.	2.9	166

#	Article	IF	CITATIONS
55	Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease. NeuroImage, 2011, 58, 469-480.	2.1	161
56	Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated withÂGW170817. Astrophysical Journal Letters, 2017, 850, L39.	3.0	156
57	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
58	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	3.0	146
59	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	3.0	145
60	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	1.6	144
61	Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Physical Review D, 2013, 88, .	1.6	132
62	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	1.6	131
63	GRAVITATIONAL WAVES FROM KNOWN PULSARS: RESULTS FROM THE INITIAL DETECTOR ERA. Astrophysical Journal, 2014, 785, 119.	1.6	125
64	Observing gravitational-wave transient GW150914 with minimal assumptions. Physical Review D, 2016, 93, .	1.6	119
65	Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run. Physical Review Letters, 2019, 123, 161102.	2.9	119
66	Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1. Physical Review D, 2010, 82, .	1.6	111
67	Model comparison from LIGO–Virgo data on GW170817's binary components and consequences for the merger remnant. Classical and Quantum Gravity, 2020, 37, 045006.	1.5	109
68	All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run. Physical Review D, 2010, 81, .	1.6	107
69	All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Physical Review D, 2012, 85, .	1.6	107
70	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	2.8	106
71	SEARCH FOR GRAVITATIONAL WAVES ASSOCIATED WITH GAMMA-RAY BURSTS DURING LIGO SCIENCE RUN 6 AND VIRGO SCIENCE RUNS 2 AND 3. Astrophysical Journal, 2012, 760, 12.	1.6	104
72	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	1.6	102

#	Article	IF	CITATIONS
73	All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO O2 data. Physical Review D, 2019, 100, .	1.6	102
74	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	1.5	98
75	Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817. Astrophysical Journal, 2019, 875, 160.	1.6	97
76	Directional Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Physical Review Letters, 2011, 107, 271102.	2.9	94
77	Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO's first observing run. Classical and Quantum Gravity, 2018, 35, 065010.	1.5	94
78	Search for gravitational waves from binary black hole inspiral, merger, and ringdown in LIGO-Virgo data from 2009–2010. Physical Review D, 2013, 87, .	1.6	92
79	High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube. Physical Review D, 2016, 93, .	1.6	92
80	Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Physical Review D, 2013, 87, .	1.6	91
81	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	1.6	90
82	BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR. Astrophysical Journal, 2011, 737, 93.	1.6	89
83	Constraints on cosmic strings using data from the first Advanced LIGO observing run. Physical Review D, 2018, 97, .	1.6	88
84	Searches for Gravitational Waves from Known Pulsars at Two Harmonics in 2015–2017 LIGO Data. Astrophysical Journal, 2019, 879, 10.	1.6	88
85	Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run. Physical Review Letters, 2021, 126, 241102.	2.9	87
86	Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009–2010 LIGO and Virgo Data. Physical Review Letters, 2014, 113, 231101.	2.9	86
87	Search for gravitational waves from binary black hole inspiral, merger, and ringdown. Physical Review D, 2011, 83, .	1.6	85
88	Calibration and sensitivity of the Virgo detector during its second science run. Classical and Quantum Gravity, 2011, 28, 025005.	1.5	85
89	Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer's disease from healthy controls. A European Alzheimer's Disease Consortium (EADC) study. NeuroImage: Clinical, 2015, 7, 34-42.	1.4	85
90	Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background. Physical Review Letters, 2018, 120, 201102.	2.9	85

#	Article	IF	CITATIONS
91	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	2.9	84
92	Implementation and testing of the first prompt search forÂgravitational wave transients with electromagnetic counterparts. Astronomy and Astrophysics, 2012, 539, A124.	2.1	84
93	Early identification of MCI converting to AD: a FDG PET study. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 2042-2052.	3.3	83
94	Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run. Physical Review Letters, 2018, 121, 231103.	2.9	77
95	Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease. Neurolmage, 2016, 125, 834-847.	2.1	76
96	First low-latency LIGO+Virgo search for binary inspirals and their electromagnetic counterparts. Astronomy and Astrophysics, 2012, 541, A155.	2.1	75
97	Palladium Nanoparticles Supported on Hyperbranched Aramids:Â Synthesis, Characterization, and Some Applications in the Hydrogenation of Unsaturated Substrates. Macromolecules, 2003, 36, 4294-4301.	2.2	73
98	The characterization of Virgo data and its impact on gravitational-wave searches. Classical and Quantum Gravity, 2012, 29, 155002.	1.5	73
99	Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO. Physical Review D, 2017, 96, .	1.6	73
100	On the Progenitor of Binary Neutron Star Merger GW170817. Astrophysical Journal Letters, 2017, 850, L40.	3.0	73
101	Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs. Astrophysical Journal, 2019, 883, 149.	1.6	72
102	Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run. Astrophysical Journal, 2019, 875, 161.	1.6	71
103	All-sky search for short gravitational-wave bursts in the first Advanced LIGO run. Physical Review D, 2017, 95, .	1.6	69
104	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	0.9	69
105	Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo. Physical Review D, 2020, 101, .	1.6	69
106	Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors. Physical Review Letters, 2014, 112, 131101.	2.9	68
107	First Search for Nontensorial Gravitational Waves from Known Pulsars. Physical Review Letters, 2018, 120, 031104.	2.9	68
108	Dopaminergic imaging and clinical predictors for phenoconversion of REM sleep behaviour disorder. Brain, 2021, 144, 278-287.	3.7	68

#	Article	IF	CITATIONS
109	All-sky search for periodic gravitational waves in the full S5 LIGO data. Physical Review D, 2012, 85, .	1.6	66
110	SEARCHES FOR CONTINUOUS GRAVITATIONAL WAVES FROM NINE YOUNG SUPERNOVA REMNANTS. Astrophysical Journal, 2015, 813, 39.	1.6	66
111	Directed search for continuous gravitational waves from the Galactic center. Physical Review D, 2013, 88, .	1.6	65
112	Gravitational-wave Constraints on the Equatorial Ellipticity of Millisecond Pulsars. Astrophysical Journal Letters, 2020, 902, L21.	3.0	65
113	All-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2017, 96, .	1.6	64
114	SUPPLEMENT: "THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914―(2016, ApJL, 833, L1). Astrophysical Journal, Supplement Series, 2016, 227, 14.	3.0	63
115	Measurements of Superattenuator seismic isolation by Virgo interferometer. Astroparticle Physics, 2010, 33, 182-189.	1.9	62
116	SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS. Astrophysical Journal, Supplement Series, 2012, 203, 28.	3.0	62
117	Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo's first three observing runs. Physical Review D, 2021, 104, .	1.6	62
118	Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO [*] . Astrophysical Journal, 2019, 875, 122.	1.6	61
119	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
120	First all-sky search for continuous gravitational waves from unknown sources in binary systems. Physical Review D, 2014, 90, .	1.6	60
121	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	1.6	60
122	First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Physical Review D, 2017, 96, .	1.6	60
123	Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Physical Review D, 2019, 99, .	1.6	60
124	Noise from scattered light in Virgo's second science run data. Classical and Quantum Gravity, 2010, 27, 194011.	1.5	59
125	Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Physical Review D, 2017, 95, .	1.6	59
126	Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run. Astrophysical Journal, 2021, 923, 14.	1.6	59

#	Article	IF	CITATIONS
127	FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2014, 211, 7.	3.0	57
128	Presynaptic dopaminergic neuroimaging in REM sleep behavior disorder: A systematic review and meta-analysis. Sleep Medicine Reviews, 2018, 41, 266-274.	3.8	56
129	SEARCH FOR GRAVITATIONAL WAVE BURSTS FROM SIX MAGNETARS. Astrophysical Journal Letters, 2011, 734, L35.	3.0	55
130	All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run. Physical Review D, 2019, 100, .	1.6	54
131	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of CRB 150906B. Astrophysical Journal, 2017, 841, 89.	1.6	52
132	Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. Physical Review D, 2019, 100, .	1.6	52
133	Directional limits on persistent gravitational waves using data from Advanced LIGO's first two observing runs. Physical Review D, 2019, 100, .	1.6	52
134	Results of the IGEC-2 search for gravitational wave bursts during 2005. Physical Review D, 2007, 76, .	1.6	50
135	Measurement and subtraction of Schumann resonances at gravitational-wave interferometers. Physical Review D, 2018, 97, .	1.6	50
136	Search for gravitational waves from intermediate mass binary black holes. Physical Review D, 2012, 85,	1.6	48
137	Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Physical Review D, 2015, 91, .	1.6	47
138	First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Physical Review D, 2017, 96, .	1.6	47
139	Metabolic patterns across core features in dementia with lewy bodies. Annals of Neurology, 2019, 85, 715-725.	2.8	47
140	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	1.6	46
141	Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Physical Review D, 2018, 97, .	1.6	46
142	Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Physical Review D, 2019, 100, .	1.6	46
143	As-grown magnesium diboride superconducting thin films deposited by pulsed laser deposition. Superconductor Science and Technology, 2001, 14, 762-764.	1.8	45
144	SUPPLEMENT: "LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914―(2016, ApJL, 826, L13). Astrophysical Journal, Supplement Series, 2016, 225, 8.	3.0	44

#	Article	IF	CITATIONS
145	Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000ÂHz. Physical Review D, 2012, 85, .	1.6	43
146	All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Physical Review D, 2021, 103, .	1.6	43
147	The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Classical and Quantum Gravity, 2014, 31, 115004.	1.5	42
148	Predictive Models Based on Support Vector Machines: Wholeâ€Brain versus Regional Analysis of Structural MRI in the Alzheimer's Disease. Journal of Neuroimaging, 2015, 25, 552-563.	1.0	42
149	Metabolic Correlates of Dopaminergic Loss in Dementia with Lewy Bodies. Movement Disorders, 2020, 35, 595-605.	2.2	42
150	All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Physical Review D, 2021, 104, .	1.6	42
151	Progressive Disintegration of Brain Networking from Normal Aging to Alzheimer Disease: Analysis of Independent Components of ¹⁸ F-FDG PET Data. Journal of Nuclear Medicine, 2017, 58, 1132-1139.	2.8	41
152	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQqC	0 0 rgBT /C	overlock 10 Th
153	A 3D deep learning model to predict the diagnosis of dementia with Lewy bodies, Alzheimer's disease, and mild cognitive impairment using brain 18F-FDG PET. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 563-584.	3.3	41
154	Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube. Physical Review D, 2017, 96, .	1.6	40
155	Automatic analysis of medial temporal lobe atrophy from structural MRIs for the early assessment of Alzheimer disease. Medical Physics, 2009, 36, 3737-3747.	1.6	39
156	Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors. Physical Review D, 2015, 91, .	1.6	39
157	Searches for Continuous Gravitational Waves from Young Supernova Remnants in the Early Third Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 921, 80.	1.6	39
158	Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Physical Review D, 2015, 91, .	1.6	37
159	Optical Properties of Disulfide-Functionalized Diacetylene Self-Assembled Monolayers on Gold: a Spectroscopic Ellipsometry Study. Journal of Physical Chemistry C, 2009, 113, 20683-20688.	1.5	36
160	Predicting the transition from normal aging to Alzheimer's disease: A statistical mechanistic evaluation of FDG-PET data. NeuroImage, 2016, 141, 282-290.	2.1	36
161	Constraining the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>p</mml:mi></mml:math> -Modeâ€" <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>g</mml:mi> -Mode Tidal Instability with GW170817_Physical Review Letters_2019_122_061104</mml:math 	2.9	36

162Search for gravitational radiation from intermediate mass black hole binaries in data from the second
LIGO-Virgo joint science run. Physical Review D, 2014, 89, .1.635

#	Article	IF	CITATIONS
163	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	1.6	35
164	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	2.9	35
165	A detector of high frequency gravitational waves based on coupled microwave cavities. Classical and Quantum Gravity, 2003, 20, 3505-3522.	1.5	34
166	Implementation of an \$mathcal{F}\$-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Classical and Quantum Gravity, 2014, 31, 165014.	1.5	34
167	The impact of automated hippocampal volumetry on diagnostic confidence in patients with suspected Alzheimer's disease: A European Alzheimer's Disease Consortium study. Alzheimer's and Dementia, 2017, 13, 1013-1023.	0.4	33
168	All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	1.6	33
169	Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run. Astrophysical Journal, 2022, 932, 133.	1.6	33
170	A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	32
171	Search for Gravitational Waves Associated with < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" > < mml:mi>l³ < /mml:mi> < /mml:math>-ray Bursts Detected by the Interplanetary Network. Physical Review Letters 2014 113 011102	2.9	32
172	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	1.6	32
173	Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophysical Journal Letters, 2021, 913, L27.	3.0	32
174	Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo. Astronomy and Astrophysics, 2022, 659, A84.	2.1	32
175	Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts. Physical Review D, 2013, 88, .	1.6	31
176	Automated voxel-by-voxel tissue classification for hippocampal segmentation: Methods and validation. Physica Medica, 2014, 30, 878-887.	0.4	31
177	Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool. Physics in Medicine and Biology, 2015, 60, 8851-8867.	1.6	31
178	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	1.6	31
179	Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. Physical Review D, 2022, 105, .	1.6	31
180	A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing Run. Astrophysical Journal, 2019, 871, 90.	1.6	30

#	Article	IF	CITATIONS
181	Status and perspectives of the Virgo gravitational wave detector. Journal of Physics: Conference Series, 2010, 203, 012074.	0.3	29
182	Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube. Physical Review D, 2014, 90, .	1.6	29
183	Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors. Physical Review D, 2014, 89, .	1.6	29
184	All-sky search for long-duration gravitational wave transients with initial LIGO. Physical Review D, 2016, 93, .	1.6	29
185	18F–FDG PET diagnostic and prognostic patterns do not overlap in Alzheimer's disease (AD) patients at the mild cognitive impairment (MCI) stage. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 2073-2083.	3.3	29
186	Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo. Astrophysical Journal, 2019, 886, 75.	1.6	29
187	Constraints from LIGO O3 Data on Gravitational-wave Emission Due to R-modes in the Glitching Pulsar PSR J0537–6910. Astrophysical Journal, 2021, 922, 71.	1.6	29
188	The Seismic Superattenuators of the Virgo Gravitational Waves Interferometer. Journal of Low Frequency Noise Vibration and Active Control, 2011, 30, 63-79.	1.3	28
189	Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Physical Review D, 2014, 89, .	1.6	28
190	The Advanced Virgo detector. Journal of Physics: Conference Series, 2015, 610, 012014.	0.3	27
191	Constraints on dark photon dark matter using data from LIGO's and Virgo's third observing run. Physical Review D, 2022, 105, .	1.6	27
192	Optically addressable single molecule magnet behaviour of vacuum-sprayed ultrathin films. Journal of Materials Chemistry, 2008, 18, 109-115.	6.7	26
193	Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO's Second Observing Run. Astrophysical Journal, 2019, 874, 163.	1.6	26
194	Feature Selection Based on Machine Learning in MRIs for Hippocampal Segmentation. Computational and Mathematical Methods in Medicine, 2015, 2015, 1-10.	0.7	25
195	Status report on the EXPLORER and NAUTILUS detectors and the present science run. Classical and Quantum Gravity, 2006, 23, S57-S62.	1.5	24
196	Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm. Pattern Analysis and Applications, 2016, 19, 579-591.	3.1	24
197	Standardized Uptake Value Ratio-Independent Evaluation of Brain Amyloidosis. Journal of Alzheimer's Disease, 2016, 54, 1437-1457.	1.2	22
198	Metabolic correlates of reserve and resilience in MCI due to Alzheimer's Disease (AD). Alzheimer's Research and Therapy, 2018, 10, 35.	3.0	22

#	Article	IF	CITATIONS
199	All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run. Physical Review D, 2019, 99, .	1.6	22
200	Optical properties of uniform, porous, amorphous Ta ₂ O ₅ coatings on silica: temperature effects. Journal Physics D: Applied Physics, 2013, 46, 455301.	1.3	21
201	Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run. Classical and Quantum Gravity, 2014, 31, 085014.	1.5	21
202	Validation of FDG-PET datasets of normal controls for the extraction of SPM-based brain metabolism maps. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2486-2499.	3.3	21
203	Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants. Physical Review D, 2022, 105, .	1.6	21
204	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3a. Astrophysical Journal, 2021, 915, 86.	1.6	20
205	Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3. Classical and Quantum Gravity, 2022, 39, 045006.	1.5	20
206	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	1.8	20
207	Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Physical Review D, 2017, 95, .	1.6	19
208	The fate of patients with REM sleep behavior disorder and mild cognitive impairment. Sleep Medicine, 2021, 79, 205-210.	0.8	19
209	All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 2021, 104, .	1.6	19
210	Atomic force microscopy and X-ray photoelectron spectroscopy characterization of low-energy ion sputtered mica. Surface Science, 2007, 601, 2735-2739.	0.8	18
211	All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run. Classical and Quantum Gravity, 2018, 35, 065009.	1.5	18
212	Semi-quantification and grading of amyloid PET: A project of the European Alzheimer's Disease Consortium (EADC). Neurolmage: Clinical, 2019, 23, 101846.	1.4	18
213	All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO's and Advanced Virgo's first three observing runs. Physical Review D, 2022, 105, .	1.6	18
214	Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Physical Review D, 2016, 93, .	1.6	17
215	Automatic temporal lobe atrophy assessment in prodromal AD: Data from the DESCRIPA study. Alzheimer's and Dementia, 2014, 10, 456-467.	0.4	16
216	Alzheimer's disease markers from structural MRI and FDG-PET brain images. European Physical Journal Plus, 2012, 127, 1.	1.2	15

#	Article	IF	CITATIONS
217	Multiple RF classifier for the hippocampus segmentation: Method and validation on EADC-ADNI Harmonized Hippocampal Protocol. Physica Medica, 2015, 31, 1085-1091.	0.4	15
218	Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO–Virgo Run O3b. Astrophysical Journal, 2022, 928, 186.	1.6	15
219	Electromagnetic characterization of superconducting radio-frequency cavities for gw detection. Classical and Quantum Gravity, 2004, 21, S1241-S1246.	1.5	14
220	On the preparation and application of novel PVDF–POSS systems. Journal of Materials Science, 2009, 44, 1764-1771.	1.7	14
221	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	1.6	14
222	Investigation of magnetic noise in advanced Virgo. Classical and Quantum Gravity, 2019, 36, 225004.	1.5	14
223	Head-to-Head Comparison among Semi-Quantification Tools of Brain FDG-PET to Aid the Diagnosis of Prodromal Alzheimer's Disease1. Journal of Alzheimer's Disease, 2019, 68, 383-394.	1.2	14
224	First joint gravitational wave search by the AURIGA–EXPLORER–NAUTILUS–Virgo Collaboration. Classical and Quantum Gravity, 2008, 25, 205007.	1.5	13
225	Performance of the Virgo interferometer longitudinal control system during the second science run. Astroparticle Physics, 2011, 34, 521-527.	1.9	13
226	Gravitational waves detector mirrors: Spectroscopic ellipsometry study of Ta2O5 films on SiO2 substrates. Thin Solid Films, 2011, 519, 2877-2880.	0.8	13
227	Magnetic coupling to the advanced Virgo payloads and its impact on the low frequency sensitivity. Review of Scientific Instruments, 2018, 89, 114501.	0.6	13
228	Novel polymer nanocomposites based on polystyrene and Tiâ€functionalized polyhedral silsesquioxanes. Polymers for Advanced Technologies, 2010, 21, 848-853.	1.6	12
229	The NoEMi (Noise Frequency Event Miner) framework. Journal of Physics: Conference Series, 2012, 363, 012037.	0.3	12
230	A Joint Fermi-GBM and LIGO/Virgo Analysis of Compact Binary Mergers from the First and Second Gravitational-wave Observing Runs. Astrophysical Journal, 2020, 893, 100.	1.6	12
231	Added value of semiquantitative analysis of brain FDG-PET for the differentiation between MCI-Lewy bodies and MCI due to Alzheimer's disease. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1263-1274.	3.3	12
232	Central heating radius of curvature correction (CHRoCC) for use in large scale gravitational wave interferometers. Classical and Quantum Gravity, 2013, 30, 055017.	1.5	11
233	The 2003 run of the EXPLORER–NAUTILUS gravitational wave experiment. Classical and Quantum Gravity, 2006, 23, S169-S178.	1.5	10
234	All-sky search of NAUTILUS data. Classical and Quantum Gravity, 2008, 25, 184012.	1.5	10

#	Article	IF	CITATIONS
235	Cleaning the Virgo sampled data for the search of periodic sources of gravitational waves. Classical and Quantum Gravity, 2009, 26, 204002.	1.5	10
236	Performances of the Virgo interferometer longitudinal control system. Astroparticle Physics, 2010, 33, 75-80.	1.9	10
237	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	1.5	10
238	Random Forest Classification for Hippocampal Segmentation in 3D MR Images. , 2013, , .		9
239	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.1	9
240	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	1.9	9
241	Advanced Virgo Status. Journal of Physics: Conference Series, 2020, 1342, 012010.	0.3	9
242	Virgo calibration and reconstruction of the gravitationnal wave strain during VSR1. Journal of Physics: Conference Series, 2010, 228, 012015.	0.3	8
243	Mechanical characterization of â€`uncoated' and â€`Ta 2 O 5 -single-layer-coated' SiO 2 substrates: result from GeNS suspension, and the CoaCh project. Classical and Quantum Gravity, 2010, 27, 084031.	^S 1.5	8
244	In-vacuum Faraday isolation remote tuning. Applied Optics, 2010, 49, 4780.	2.1	8
245	A state observer for the Virgo inverted pendulum. Review of Scientific Instruments, 2011, 82, 094502.	0.6	8
246	Self-assembled monolayers of a novel diacetylene on gold. Applied Surface Science, 2005, 246, 403-408.	3.1	7
247	EXPLORER and NAUTILUS gravitational wave detectors: a status report. Classical and Quantum Gravity, 2008, 25, 114048.	1.5	6
248	New parametric transducer for resonant detectors: advances and room temperature test. Journal of Physics: Conference Series, 2008, 122, 012031.	0.3	6
249	Automatic Alignment system during the second science run of the Virgo interferometer. Astroparticle Physics, 2011, 34, 327-332.	1.9	6
250	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	0.5	6
251	Striatal dopamine transporter SPECT quantification: head-to-head comparison between two three-dimensional automatic tools. EJNMMI Research, 2020, 10, 137.	1.1	6
252	Headway in cavity design through genetic algorithms. IEEE Transactions on Magnetics, 1995, 31, 1566-1569.	1.2	5

#	Article	IF	CITATIONS
253	Characterization of the Virgo seismic environment. Classical and Quantum Gravity, 2012, 29, 025005.	1.5	5
254	Fully automated hippocampus segmentation with virtual ant colonies. , 2012, , .		5
255	Associations among education, age, and the dementia with Lewy bodies (DLB) metabolic pattern: A Europeanâ€ÐLB consortium project. Alzheimer's and Dementia, 2021, 17, 1277-1286.	0.4	5
256	All-sky incoherent search for periodic signals with Explorer 2005 data. Classical and Quantum Gravity, 2008, 25, 114028.	1.5	4
257	Control of the laser frequency of the Virgo gravitational wave interferometer with an in-loop relative frequency stability of 1.0 $\rm \tilde{A}-10 \hat{a}^2 21$ on a 100 ms time scale. , 2009, , .		4
258	Multitechnique investigation of Ta ₂ O ₅ films on SiO ₂ substrates: Comparison of optical, chemical and morphological properties. Journal of Physics: Conference Series, 2010, 228, 012020.	0.3	4
259	THE VIRGO INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION. International Journal of Modern Physics D, 2011, 20, 2075-2079.	0.9	4
260	Exploring the brain metabolic correlates of process-specific CSF biomarkers in patients with MCI due to Alzheimer's disease: preliminary data. Neurobiology of Aging, 2022, 117, 212-221.	1.5	4
261	A comparison of advanced semi-quantitative amyloid PET analysis methods. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 4097-4108.	3.3	4
262	Superconducting cavity transducer for resonant gravitational radiation antennas. Journal of Physics: Conference Series, 2006, 32, 339-345.	0.3	3
263	Publisher's Note: All-sky search for gravitational-wave bursts in the first joint LIGO-GEO-Virgo run [Phys. Rev. D 81 , 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	3
264	A kinetics-based approach to amyloid PET semi-quantification. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2175-2185.	3.3	3
265	Probing the Role of a Regional Quantitative Assessment of Amyloid PET. Journal of Alzheimer's Disease, 2021, 80, 383-396.	1.2	3
266	Pipe cooling perspectives for superconducting accelerating cavities. Physical Review Special Topics: Accelerators and Beams, 2003, 6, .	1.8	2
267	SrTiO3 Based Side Gate Field Effect Transistor Realized by Submicron Scale AFM Induced Local Chemical Reactions. Journal of Electroceramics, 2004, 13, 331-337.	0.8	2
268	Gain and noise analysis of HEMT amplifiers from room temperature to superfluid He. Classical and Quantum Gravity, 2006, 23, S293-S298.	1.5	2
269	Thermal stability and corrosion resistance of the magnetic anisotropy in ultrathin nanopatterned films. Journal of Applied Physics, 2008, 104, 033905.	1.1	2
270	Noise monitor tools and their application to Virgo data. Journal of Physics: Conference Series, 2012, 363, 012024.	0.3	2

#	Article	IF	CITATIONS
271	Publisher's Note: Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 [Phys. Rev. D82, 102001 (2010)]. Physical Review D, 2012, 85, .	1.6	2
272	Progress and challenges in advanced ground-based gravitational-wave detectors. General Relativity and Gravitation, 2014, 46, 1.	0.7	2
273	Medial temporal lobe high resolution magnetic resonance images for the early diagnosis of Alzheimer's disease. , 2015, 2015, 4274-7.		2
274	Neuroimaging Findings in Mild Cognitive Impairment. , 2014, , 271-307.		2
275	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
276	A THERMAL COMPENSATION SYSTEM FOR THE GRAVITATIONAL WAVE DETECTOR VIRGO. , 2012, , .		2
277	Study of the δ-Al/Ag superconducting alloy for TES applications. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 559, 465-467.	0.7	1
278	Automatic Localization of the Hippocampal Region in MR Images to Asses Early Diagnosis of Alzheimer's Disease in MCI Patients. , 2008, , .		1
279	proAD: A web tool for the automatic assessment of prodromal Alzheimer's disease. , 2011, , .		1
280	Status of the commissioning of the Virgo interferometer. , 2012, , .		1
281	The role of molecular imaging in the frame of the revised dementia with Lewy body criteria. Clinical and Translational Imaging, 2019, 7, 83-98.	1.1	1
282	Amyloid PET in the diagnostic workup of neurodegenerative disease. Clinical and Translational Imaging, 2021, 9, 383-397.	1.1	1
283	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
284	Neuroimaging Findings in Mild Cognitive Impairment. , 2021, , 367-425.		1
285	Tools for noise characterization in Virgo. Journal of Physics: Conference Series, 2010, 243, 012004.	0.3	0
286	Structural and functional brain imaging in the assessment of prodromal Alzheimer's disease. , 2011, , .		0
287	MRI and PET combined analysis of the medial temporal lobe. , 2011, , .		0
288	Publisher's Note: Search for gravitational waves from binary black hole inspiral, merger, and ringdown [Phys. Rev. D83, 122005 (2011)]. Physical Review D, 2012, 85, .	1.6	0

#	Article	IF	CITATIONS
289	Automated hippocampus segmentation with the Channeler Ant Model: Results on different datasets. , 2015, , .		Ο
290	MRI analysis for hippocampus segmentation on a distributed infrastructure. , 2016, , .		0
291	Accuracy of FDG-PET at the individual level in MCI-LB versus MCI-AD: A stepwise approach from visual to semi-quantitative analysis. Journal of the Neurological Sciences, 2021, 429, 117830.	0.3	0
292	A Novel Template-Based Approach to the Segmentation of the Hippocampal Region. Computational Methods in Applied Sciences (Springer), 2011, , 229-246.	0.1	0
293	Advanced Virgo Status. , 2017, , .		0
294	Emerging topics and practical aspects for an appropriate use of amyloid PET in the current Italian context. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2019, 63, 83-92.	0.4	0
295	Can electrons neutralize the electrostatic charge on test mass mirrors in gravitational wave detectors?. Physical Review D, 2022, 105, .	1.6	Ο