Yiska Goldfeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9141411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-sensory carbon-based textile reinforced concrete beams – Characterization of the structural-electrical response by AC measurements. Sensors and Actuators A: Physical, 2022, 334, 113322.	2.0	9
2	Smart self-sensory TRC pipes—proof of concept. Smart Materials and Structures, 2022, 31, 055011.	1.8	1
3	Smart self-sensory carbon-based textile reinforced concrete structures for structural health monitoring. Structural Health Monitoring, 2021, 20, 2396-2411.	4.3	8
4	Occupant comfort analysis for rigid floating structures – methodology and design assessment for offshore dwelling module. Ships and Offshore Structures, 2021, 16, 184-199.	0.9	3
5	Monitoring capabilities of various smart self sensory carbon-based textiles to detect water infiltration. Journal of Intelligent Material Systems and Structures, 2021, 32, 2566-2581.	1.4	10
6	Design methodology for TRC pipes: experimental and analytical investigations. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.	1.3	3
7	Structural modelling of textile-reinforced concrete elements under uniaxial tensile loading. Composite Structures, 2020, 235, 111805.	3.1	10
8	Modular floating structures (MFS) for offshore dwelling a hydrodynamic analysis in the frequency domain. Ocean Engineering, 2020, 216, 107996.	1.9	12
9	Electrical–structural characterisation of smart carbonâ€based textile reinforced concrete beams by integrative gauge factors. Strain, 2020, 56, e12344.	1.4	6
10	Sensing accumulated cracking with smart coated and uncoated carbon based TRC. Measurement: Journal of the International Measurement Confederation, 2019, 141, 137-151.	2.5	15
11	Expanding coastal cities – Proof of feasibility for modular floating structures (MFS). Journal of Cleaner Production, 2019, 222, 520-538.	4.6	17
12	AR-glass/carbon-based textile-reinforced concrete elements for detecting water infiltration within cracked zones. Structural Health Monitoring, 2019, 18, 1383-1400.	4.3	15
13	New Age Advanced Smart Water Pipe Systems Using Textile Reinforced Concrete. Procedia Manufacturing, 2018, 21, 376-383.	1.9	8
14	Electrical characterization of smart sensory system using carbon based textile reinforced concrete for leakage detection. Materials and Structures/Materiaux Et Constructions, 2018, 51, 1.	1.3	15
15	Micro and macro crack sensing in TRC beam under cyclic loading. Journal of Mechanics of Materials and Structures, 2017, 12, 579-601.	0.4	19
16	Sensory carbon fiber based textile-reinforced concrete for smart structures. Journal of Intelligent Material Systems and Structures, 2016, 27, 469-489.	1.4	51
17	Curvature rate approach to the evaluation of the stiffness distribution in plate-like structures. Journal of Sound and Vibration, 2014, 333, 4483-4498.	2.1	4
18	Using the exact element method and modal frequency changes to identify distributed damage in beams. Engineering Structures, 2013, 51, 60-72.	2.6	13

YISKA GOLDFELD

#	Article	IF	CITATIONS
19	Damage Identification in Reinforced Concrete Beams Using Spatially Distributed Strain Measurements. Journal of Structural Engineering, 2013, 139, .	1.7	27
20	Measures for identifying cracks within reinforced concrete beams using BOTDR. Proceedings of SPIE, 2010, , .	0.8	7
21	A direct identification procedure for assessment of stiffness distribution. Engineering Structures, 2009, 31, 1068-1076.	2.6	6
22	Mixed Formulation Buckling Analysis of Laminated Shells. , 2008, , .		0
23	Elastic Buckling and Imperfection Sensitivity of Generally Stiffened Conical Shells. AIAA Journal, 2007, 45, 721-729.	1.5	6
24	Imperfection sensitivity of laminated conical shells. International Journal of Solids and Structures, 2007, 44, 1221-1241.	1.3	23
25	Identification of the stiffness distribution in statically indeterminate beams. Journal of Sound and Vibration, 2007, 304, 918-931.	2.1	9
26	Elastic Buckling of Laminated Conical Shells Using a Hierarchical High-Fidelity Analysis Procedure. Journal of Engineering Mechanics - ASCE, 2006, 132, 1335-1344.	1.6	12
27	Design and optimization of laminated conical shells for buckling. Thin-Walled Structures, 2005, 43, 107-133.	2.7	42
28	Discontinuities in the Sensitivity Curves of Laminated Cylindrical Shells. Journal of Applied Mechanics, Transactions ASME, 2004, 71, 418-420.	1.1	3
29	Shell Theory Accuracy with Regard to Initial Postbuckling Behavior of Cylindrical Shell. AIAA Journal, 2004, 42, 429-432.	1.5	3
30	Buckling of Laminated Conical Shells Given the Variations of the Stiffness Coefficients. AIAA Journal, 2004, 42, 642-649.	1.5	54
31	The influence of the stiffness coefficients on the imperfection sensitivity of laminated cylindrical shells. Composite Structures, 2004, 64, 243-247.	3.1	4
32	Optimum Design of Filament-Wound Laminated Conical Shells for Buckling Using a Response Surface Methodology. , 2004, , .		0
33	Imperfection Sensitivity of Conical Shells. AIAA Journal, 2003, 41, 517-524.	1.5	33
34	Imperfection Sensitivity of Laminated Cylindrical Shells According to Different Shell Theories. Journal of Engineering Mechanics - ASCE, 2003, 129, 1048-1053.	1.6	6
35	Buckling of Laminated Cylindrical Shells in Terms of Different Theories and Formulations. AIAA Journal, 2001, 39, 1773-1781.	1.5	19
36	Assessment of the bending stiffness distribution in large 2D RC plates and slabs like-structures based on spatially distributed strain data for structural health monitoring. European Journal of Environmental and Civil Engineering, 0, , 1-17.	1.0	0