
Mangani Luca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9141011/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Capturing the S-Shape of Pump-Turbines by Computational Fluid Dynamics Simulations Using an Anisotropic Turbulence Model. Journal of Fluids Engineering, Transactions of the ASME, 2022, 144, .	1.5	2
2	Application of Advanced RANS Turbulence Models for the Prediction of Turbomachinery Flows. Journal of Turbomachinery, 2022, 144, .	1.7	5
3	A Pressure-Based Fully-Coupled Flow Algorithm for the Control Volume Finite Element Method. Applied Sciences (Switzerland), 2022, 12, 4633.	2.5	1
4	Steady-State Fluid-Solid Mixing Plane to Replace Transient Conjugate Heat Transfer Computations during Design Phase. International Journal of Turbomachinery, Propulsion and Power, 2021, 6, 6.	1.1	0
5	A Consistent and Implicit Rhie–Chow Interpolation for Drag Forces in Coupled Multiphase Solvers. International Journal of Turbomachinery, Propulsion and Power, 2021, 6, 7.	1.1	1
6	A discrete adjoint method for pressure-based algorithms. Computers and Fluids, 2021, 227, 105037.	2.5	10
7	An implicit bounding formulation for the volume fraction equation in multiphase flows. Numerical Heat Transfer, Part B: Fundamentals, 2021, 79, 235-254.	0.9	2
8	Real Gas Models in Coupled Algorithms Numerical Recipes and Thermophysical Relations. International Journal of Turbomachinery, Propulsion and Power, 2020, 5, 20.	1.1	5
9	A fully implicit conjugate heat transfer method. Numerical Heat Transfer, Part B: Fundamentals, 2020, 78, 175-196.	0.9	1
10	On the Application of the Full Reynolds Stress Model for Unsteady CFD in Hydraulic Turbomachines. , 2020, , .		0
11	A Robust Implementation of a Reynolds Stress Model for Turbomachinery Applications in a Coupled Solver Environment. , 2020, , .		1
12	The characteristic boundary condition in pressure-based methods. Numerical Heat Transfer, Part B: Fundamentals, 2019, 76, 43-59.	0.9	6
13	Capturing S-Shape of Pump-Turbines by CFD Simulations Using an Anisotropic Turbulence Model. , 2019, , .		2
14	A fully coupled OpenFOAM® solver for transient incompressible turbulent flows in ALE formulation. Numerical Heat Transfer, Part B: Fundamentals, 2017, 71, 313-326.	0.9	12
15	Implementation of boundary conditions in the finite-volume pressure-based method—Part I: Segregated solvers. Numerical Heat Transfer, Part B: Fundamentals, 2016, 69, 534-562.	0.9	11
16	An OpenFOAM pressure-based coupled CFD solver for turbulent and compressible flows in turbomachinery applications. Numerical Heat Transfer, Part B: Fundamentals, 2016, 69, 413-431.	0.9	14
17	Development of High Order LES Solver for Heat Transfer Applications Based on the Open Source OpenFOAM Framework. , 2015, , .		2
18	3D Casing-Distributor Analysis for Hydraulic Design Application. International Journal of Fluid Machinery and Systems, 2015, 8, 142-154.	0.2	1

Mangani Luca

#	Article	IF	CITATIONS
19	Development of a Novel Fully Coupled Solver in OpenFOAM: Steady-State Incompressible Turbulent Flows. Numerical Heat Transfer, Part B: Fundamentals, 2014, 66, 1-20.	0.9	40
20	Development of a Novel Pressure-Based Coupled CFD Solver for Turbulent Compressible Flows in Turbomachinery Applications. , 2013, , .		1
21	Assessment of Various Turbulence Models in a High Pressure Ratio Centrifugal Compressor With an Object Oriented CFD Code. Journal of Turbomachinery, 2012, 134, .	1.7	29
22	An Object-Oriented CFD Code for Optimization of High Pressure Ratio Compressors. , 2012, , .		2
23	Numerical Investigation on the Influence of the Fillet on Film Cooling Rotor Blades in Heavy Duty Gas Turbines With an Object-Oriented CFD Code. , 2012, , .		0
24	Assessment of Various Turbulence Models in a High Pressure Ratio Centrifugal Compressor With an Object Oriented CFD Code. , 2011, , .		1