
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9140960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Colonic inflammation in Parkinson's disease. Neurobiology of Disease, 2013, 50, 42-48.	4.4	482
2	Normal feeding behavior, body weight and leptin response require the neuropeptide Y Y2 receptor. Nature Medicine, 1999, 5, 1188-1193.	30.7	261
3	Differential Regulation of mRNAs for GDNF and its Receptors Ret and GDNFRα After Sciatic Nerve Lesion in the Mouse. European Journal of Neuroscience, 1997, 9, 1450-1460.	2.6	225
4	1,25-Dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Molecular Brain Research, 1994, 24, 70-76.	2.3	210
5	Pathological lesions in colonic biopsies during Parkinson's disease. Gut, 2008, 57, 1741-1743.	12.1	192
6	1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. NeuroReport, 1996, 7, 2171-2175.	1.2	182
7	Reduced antinociception and plasma extravasation in mice lacking a neuropeptide Y receptor. Nature, 2001, 409, 513-517.	27.8	177
8	1,25-Dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes. NeuroReport, 1994, 6, 124-126.	1.2	175
9	Expression and regulation of GFRÂ3, a glial cell line-derived neurotrophic factor family receptor. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1295-1300.	7.1	140
10	Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-β1-dependent pathway. American Journal of Physiology - Renal Physiology, 2007, 292, G231-G241.	3.4	137
11	Complementary and overlapping expression of Y1, Y2 and Y5 receptors in the developing and adult mouse nervous system. Neuroscience, 1998, 87, 289-302.	2.3	135
12	Synthesis of 1,25-dihydroxyvitamin D3by rat brain macrophages in vitro. Journal of Neuroscience Research, 1994, 38, 214-220.	2.9	106
13	Induction of glioma cell death by 1,25 (OH) ₂ vitamin D ₃ : Towards an endocrine therapy of brain tumors?. Journal of Neuroscience Research, 1994, 37, 271-277.	2.9	90
14	1,25-dihydroxyvitamin D3 regulates the expression of VDR and NGF gene in Schwann cells in vitro. Journal of Neuroscience Research, 1998, 53, 742-746.	2.9	84
15	Mesenchymal stem cells induce a weak immune response in the rat striatum after allo or xenotransplantation. Journal of Cellular and Molecular Medicine, 2009, 13, 2547-2558.	3.6	81
16	Activityâ€dependent regulation of tyrosine hydroxylase expression in the enteric nervous system. Journal of Physiology, 2008, 586, 1963-1975.	2.9	75
17	Transgenic expression of CTLA4-Ig by fetal pig neurons for xenotransplantation. Transgenic Research, 2005, 14, 373-384.	2.4	70
18	1,25-Dihydroxyvitamin D3 regulates the expression of the low-affinity neurotrophin receptor. Molecular Brain Research, 1996, 41, 259-268.	2.3	66

#	Article	IF	CITATIONS
19	Fluorescent activated cell sorting (FACS): a rapid and reliable method to estimate the number of neurons in a mixed population. Journal of Neuroscience Methods, 2003, 129, 73-79.	2.5	62
20	Human dental pulp stem cells cultured in serum-free supplemented medium. Frontiers in Physiology, 2013, 4, 357.	2.8	60
21	Expression of 25(OH) vitamin D3 24-hydroxylase gene in glial cells. NeuroReport, 1993, 5, 255-257.	1.2	57
22	Comparison of Spheroids Formed by Rat Glioma Stem Cells and Neural Stem Cells Reveals Differences in Glucose Metabolism and Promising Therapeutic Applications. Journal of Biological Chemistry, 2012, 287, 33664-33674.	3.4	55
23	The multiple faces of inflammatory enteric glial cells: is Crohn's disease a gliopathy?. American Journal of Physiology - Renal Physiology, 2018, 315, G1-G11.	3.4	53
24	Neuropeptide Y alters sedation through a hypothalamic Y1-mediated mechanism. European Journal of Neuroscience, 2001, 13, 2241-2246.	2.6	52
25	Longâ€lasting coexpression of nestin and glial fibrillary acidic protein in primary cultures of astroglial cells with a major participation of nestin ⁺ /GFAP ^{â^'} cells in cell proliferation. Journal of Neuroscience Research, 2006, 83, 1515-1524.	2.9	52
26	Assessment of ethanol consumption and water drinking by NPY Y2 receptor knockout mice. Peptides, 2004, 25, 975-983.	2.4	46
27	Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system. Frontiers in Cellular Neuroscience, 2012, 6, 17.	3.7	46
28	Mesenchymal stem cells induce a weak immune response in the rat striatum after allo or xenotransplantation. Journal of Cellular and Molecular Medicine, 2009, 13, 2547-2558.	3.6	46
29	Effects of Human Alpha-Synuclein A53T-A30P Mutations on SVZ and Local Olfactory Bulb Cell Proliferation in a Transgenic Rat Model of Parkinson Disease. Parkinson's Disease, 2011, 2011, 1-11.	1.1	44
30	Attenuation of hypercholesterolemia and hyperglycemia in ob/ob mice by NPY Y2 receptor ablation. Peptides, 2002, 23, 1087-1091.	2.4	42
31	Cytotoxic effects of 1α,25-dihydroxyvitamin D3 and synthetic vitamin D3 analogues on a glioma cell line. Cancer Letters, 1996, 100, 3-10.	7.2	40
32	Distinct roles of the Y1 and Y2 receptors on neuropeptide Y-induced sensitization to sedation. Journal of Neurochemistry, 2001, 78, 1201-1207.	3.9	40
33	Differential regulation of GDNF, neurturin, and their receptors in primary cultures of rat glial cells. Journal of Neuroscience Research, 2001, 64, 242-251.	2.9	39
34	Complex Interactions Among Second Messenger Pathways, Steroid Hormones, and Protooncogenes of the Fos and Jun Families Converge in the Regulation of the Nerve Growth Factor Gene. Journal of Neurochemistry, 1993, 60, 1843-1853.	3.9	38
35	The Signaling Adaptor Protein CD3ζ Is a Negative Regulator of Dendrite Development in Young Neurons. Molecular Biology of the Cell, 2008, 19, 2444-2456.	2.1	33
36	<i>L. fermentum CECT 5716</i> prevents stressâ€induced intestinal barrier dysfunction in newborn rats. Neurogastroenterology and Motility, 2017, 29, e13069.	3.0	33

#	Article	IF	CITATIONS
37	Distinct Roles of Bcl-2 and Bcl-Xl in the Apoptosis of Human Bone Marrow Mesenchymal Stem Cells during Differentiation. PLoS ONE, 2011, 6, e19820.	2.5	32
38	Postnatal development of the myenteric glial network and its modulation by butyrate. American Journal of Physiology - Renal Physiology, 2016, 310, G941-G951.	3.4	32
39	Low affinity NGF receptor expression in the central nervous system during experimental allergic encephalomyelitis. Journal of Neuroscience Research, 1998, 52, 83-92.	2.9	31
40	Cell Therapy for Parkinson's Disease: A Translational Approach to Assess the Role of Local and Systemic Immunosuppression. American Journal of Transplantation, 2016, 16, 2016-2029.	4.7	31
41	Reactive Oxygen Species Influence Nerve Growth Factor Synthesis in Primary Rat Astrocytes. Journal of Neurochemistry, 1994, 62, 2178-2186.	3.9	30
42	AUF1 and Hu proteins in the developing rat brain: Implication in the proliferation and differentiation of neural progenitors. Journal of Neuroscience Research, 2009, 87, 1296-1309.	2.9	29
43	Intracerebral xenotransplantation: recent findings and perspectives for local immunosuppression. Current Opinion in Organ Transplantation, 2011, 16, 190-194.	1.6	29
44	Expression of Heme Oxygenaseâ€1 in Neural Stem/Progenitor Cells as a Potential Mechanism to Evade Host Immune Response. Stem Cells, 2012, 30, 2342-2353.	3.2	26
45	New lines of GFP transgenic rats relevant for regenerative medicine and gene therapy. Transgenic Research, 2010, 19, 745-763.	2.4	25
46	Local control of the host immune response performed with mesenchymal stem cells: perspectives for functional intracerebral xenotransplantation. Journal of Cellular and Molecular Medicine, 2015, 19, 124-134.	3.6	24
47	Targeting the CD80/CD86 costimulatory pathway with CTLA4-Ig directs microglia toward a repair phenotype and promotes axonal outgrowth. Glia, 2015, 63, 2298-2312.	4.9	24
48	Enteric glial cells have specific immunosuppressive properties. Journal of Neuroimmunology, 2016, 295-296, 79-83.	2.3	24
49	Interactions between second messenger pathways influence NGF synthesis in mouse primary astrocytes. Brain Research, 1995, 672, 128-136.	2.2	23
50	Cell surface antigens on rat neural progenitors and characterization of the CD3 (+)/CD3 (â^') cell populations. Differentiation, 2006, 74, 530-541.	1.9	23
51	Minocycline Promotes Long-Term Survival of Neuronal Transplant in the Brain by Inhibiting Late Microglial Activation and T-Cell Recruitment. Transplantation, 2010, 89, 816-823.	1.0	23
52	Cancer stem cells: Beyond Koch's postulates. Cancer Letters, 2009, 278, 3-8.	7.2	22
53	Dendritic cell recruitment following xenografting of pig fetal mesencephalic cells into the rat brain. Experimental Neurology, 2006, 202, 76-84.	4.1	20
54	Low-Dose Pesticide Mixture Induces Senescence in Normal Mesenchymal Stem Cells (MSC) and Promotes Tumorigenic Phenotype in Premalignant MSC. Stem Cells, 2017, 35, 800-811.	3.2	20

#	Article	IF	CITATIONS
55	Regulation of NGF, BDNF and LNGFR gene expression in ROS 17/2.8 cells. Molecular and Cellular Endocrinology, 1996, 116, 149-156.	3.2	19
56	Assessing the Potential Clinical Utility of Transplantations of Neural and Mesenchymal Stem Cells for Treating Neurodegenerative Diseases. Methods in Molecular Biology, 2012, 879, 147-164.	0.9	19
57	The neuropeptide Y receptors, Y1 and Y2, are transiently and differentially expressed in the developing cerebellum. Neuroscience, 2002, 113, 767-777.	2.3	18
58	Survival and Differentiation of Adenovirus-Generated Induced Pluripotent Stem Cells Transplanted into the Rat Striatum. Cell Transplantation, 2014, 23, 1407-1423.	2.5	17
59	Glioplasticity in irritable bowel syndrome. Neurogastroenterology and Motility, 2018, 30, e13232.	3.0	17
60	Phosphatidylcholine-phospholipase C mediates the induction of nerve growth factor in cultured glial cells. FEBS Letters, 1995, 364, 301-304.	2.8	15
61	In Vitro Analyses of the Immunosuppressive Properties of Neural Stem/Progenitor Cells Using Anti-CD3/CD28-Activated T Cells. Methods in Molecular Biology, 2010, 677, 233-243.	0.9	15
62	Trophic and immunoregulatory properties of neural precursor cells: Benefit for intracerebral transplantation. Experimental Neurology, 2011, 230, 35-47.	4.1	14
63	The immune molecule CD3zeta and its downstream effectors ZAPâ€70/Syk mediate ephrin signaling in neurons to regulate early neuritogenesis. Journal of Neurochemistry, 2011, 119, 708-722.	3.9	14
64	Expression of the nerve growth factor gene is controlled by the microtubule network. Journal of Neuroscience Research, 1995, 41, 462-470.	2.9	13
65	Lipopolysaccharide and TNFα regulate the expression of GDNF, neurturin and their receptors. NeuroReport, 2003, 14, 1529-1534.	1.2	12
66	Immunoregulatory properties of neural stem cells. Immunotherapy, 2011, 3, 39-41.	2.0	12
67	Rat enteric glial cells express novel isoforms of Interleukineâ€7 regulated during inflammation. Neurogastroenterology and Motility, 2019, 31, e13467.	3.0	12
68	Ectopic expression of the TrkA receptor in adult dopaminergic mesencephalic neurons promotes retrograde axonal NGF transport and NGF-dependent neuroprotection. Experimental Neurology, 2003, 183, 367-378.	4.1	11
69	Decreased choline acetyltransferase activity in nerve growth factor-transgenic mice during brain development. Neuroscience, 1994, 62, 333-336.	2.3	8
70	The Use of Stem Cells in Regenerative Medicine for Parkinson's and Huntington's Diseases. Current Medicinal Chemistry, 2012, 19, 6018-6035.	2.4	8
71	A theory that may explain the Hayflick limit — a means to delete one copy of a repeating sequence during each cell cycle in certain human cells such as fibroblasts. Mechanisms of Ageing and Development, 1994, 75, 205-213.	4.6	6
72	Pig Neural Cells Derived from Foetal Mesencephalon as Cell Source for Intracerebral Xenotransplantation. Methods in Molecular Biology, 2012, 885, 233-243.	0.9	6

#	Article	IF	CITATIONS
73	β1 Integrin as a Xenoantigen in Fetal Porcine Mesencephalic Cells Transplanted into the Rat Brain. Cell Transplantation, 2005, 14, 527-536.	2.5	5
74	IgG Response to Intracerebral Xenotransplantation: Specificity and Role in the Rejection of Porcine Neurons. American Journal of Transplantation, 2014, 14, 1109-1119.	4.7	5
75	T cells show preferential adhesion to enteric neural cells in culture and are close to neural cells in the myenteric ganglia of Crohn's patients. Journal of Neuroimmunology, 2020, 349, 577422.	2.3	5
76	Ectopic Expression of the Immune Adaptor Protein CD3zeta in Neural Stem/Progenitor Cells Disrupts Cell-Fate Specification. Journal of Molecular Neuroscience, 2012, 46, 431-441.	2.3	4
77	Vitamin D, A Neuroactive Hormone: From Brain Development to Pathological Disorders. , 2005, , 1779-1789.		1
78	Vitamin D, a Hormone Involved in the Control of Neuro-Immune Interactions in the Brain. Research and Perspectives in Neurosciences, 2000, , 193-201.	0.4	0