
Stuart K Grange

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9140912/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Random forest meteorological normalisation models for Swiss PM ₁₀ trend analysis. Atmospheric Chemistry and Physics, 2018, 18, 6223-6239.	1.9	210
2	Using meteorological normalisation to detect interventions in air quality time series. Science of the Total Environment, 2019, 653, 578-588.	3.9	172
3	COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmospheric Chemistry and Physics, 2021, 21, 4169-4185.	1.9	91
4	Strong Temperature Dependence for Light-Duty Diesel Vehicle NO _{<i>x</i>} Emissions. Environmental Science & Technology, 2019, 53, 6587-6596.	4.6	82
5	Source apportionment advances using polar plots of bivariate correlation and regression statistics. Atmospheric Environment, 2016, 145, 128-134.	1.9	72
6	Lower vehicular primary emissions of NO2 in Europe than assumed in policy projections. Nature Geoscience, 2017, 10, 914-918.	5.4	72
7	High Density Ozone Monitoring Using Gas Sensitive Semi-Conductor Sensors in the Lower Fraser Valley, British Columbia. Environmental Science & Technology, 2014, 48, 3970-3977.	4.6	61
8	Global simulation of tropospheric chemistry at 12.5 km resolution: performance and evaluation of the GEOS-Chem chemical module (v10-1) within the NASA GEOS Earth system model (GEOS-5 ESM). Geoscientific Model Development, 2018, 11, 4603-4620.	1.3	60
9	Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning. Environmental Pollution, 2021, 274, 115900.	3.7	54
10	Temporal and spatial analysis of ozone concentrations in Europe based on timescale decomposition and a multi-clustering approach. Atmospheric Chemistry and Physics, 2020, 20, 9051-9066.	1.9	29
11	Evaluation of equivalent black carbon source apportionment using observations from Switzerland between 2008 and 2018. Atmospheric Measurement Techniques, 2020, 13, 1867-1885.	1.2	28
12	Frequency of use of household products containing VOCs and indoor atmospheric concentrations in homes. Environmental Sciences: Processes and Impacts, 2021, 23, 699-713.	1.7	25
13	Data Verification Tools for Minimizing Management Costs of Dense Air-Quality Monitoring Networks. Environmental Science & Technology, 2016, 50, 835-846.	4.6	23
14	Linking Switzerland's PM ₁₀ and PM _{2.5} oxidative potential (OP) with emission sources. Atmospheric Chemistry and Physics, 2022, 22, 7029-7050.	1.9	20
15	Post-Dieselgate: Evidence of NO _x Emission Reductions Using On-Road Remote Sensing. Environmental Science and Technology Letters, 2020, 7, 382-387.	3.9	18
16	Machine Learning and Meteorological Normalization for Assessment of Particulate Matter Changes during the COVID-19 Lockdown in Zagreb, Croatia. International Journal of Environmental Research and Public Health, 2022, 19, 6937.	1.2	9
17	Reliable Long-Term Data from Low-Cost Gas Sensor Networks in the Environment. Proceedings (mdpi), 2017, 1, .	0.2	5
18	Cellulose in atmospheric particulate matter at rural and urban sites across France and Switzerland. Atmospheric Chemistry and Physics, 2022, 22, 6021-6043.	1.9	4

#	Article	IF	CITATIONS
19	Switzerland's PM10 and PM2.5 environmental increments show the importance of non-exhaust emissions. Atmospheric Environment: X, 2021, 12, 100145.	0.8	3