Pawel Sajkiewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9140728/publications.pdf

Version: 2024-02-01

76 papers

2,697 citations

30 h-index 50 g-index

77 all docs

77 docs citations

times ranked

77

3160 citing authors

#	Article	IF	CITATIONS
1	Phase transitions during stretching of poly(vinylidene fluoride). European Polymer Journal, 1999, 35, 423-429.	2.6	273
2	Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13575-13583.	4.0	148
3	Crystallization of polypropylene at various cooling rates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 413-414, 442-446.	2.6	120
4	Crystallization of poly(vinylidene fluoride) during ultra-fast cooling. Thermochimica Acta, 2007, 461, 153-157.	1.2	107
5	Biodegradation of bicomponent PCL/gelatin and PCL/collagen nanofibers electrospun from alternative solvent system. Polymer Degradation and Stability, 2016, 130, 10-21.	2.7	103
6	Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering. Polymers, 2020, 12, 161.	2.0	84
7	Structure and morphology of electrospun polycaprolactone/gelatine nanofibres. European Polymer Journal, 2013, 49, 2052-2061.	2.6	80
8	Deformation of undrawn poly(trimethylene terephthalate) (PTT) fibers. Polymer, 2001, 42, 7153-7160.	1.8	78
9	Progress in the Applications of Smart Piezoelectric Materials for Medical Devices. Polymers, 2020, 12, 2754.	2.0	78
10	Hydrophilic Surface Functionalization of Electrospun Nanofibrous Scaffolds in Tissue Engineering. Polymers, 2020, 12, 2636.	2.0	77
11	Electrospinning of gelatin for tissue engineering – molecular conformation as one of the overlooked problems. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 2009-2022.	1.9	67
12	Application of the Ozawa model to non-isothermal crystallization of poly(ethylene terephthalate). Polymer, 2001, 42, 5365-5370.	1.8	65
13	Crystallization behaviour of poly(vinylidene fluoride). European Polymer Journal, 1999, 35, 1581-1590.	2.6	62
14	Novel drug delivery systems based on triaxial electrospinning based nanofibers. Reactive and Functional Polymers, 2021, 163, 104895.	2.0	62
15	Development of electrospun poly (vinyl alcohol)â€based bionanocomposite scaffolds for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2018, 106, 1111-1120.	2.1	59
16	Electrospinning and Structure of Bicomponent Polycaprolactone/Gelatin Nanofibers Obtained Using Alternative Solvent System. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 354-364.	1.8	56
17	Injectable hydrogels as novel materials for central nervous system regeneration. Journal of Neural Engineering, 2018, 15, 051002.	1.8	56
18	Advances in 3D Printing for Tissue Engineering. Materials, 2021, 14, 3149.	1.3	55

#	Article	IF	CITATIONS
19	The effect of a solvent on cellular response to PCL/gelatin and PCL/collagen electrospun nanofibres. European Polymer Journal, 2018, 104, 147-156.	2.6	51
20	Crystallinity study of electrospun poly (vinyl alcohol) nanofibers: effect of electrospinning, filler incorporation, and heat treatment. Iranian Polymer Journal (English Edition), 2016, 25, 647-659.	1.3	47
21	Tapered Multiblock Copolymers Based on Farnesene and Styrene: Impact of Biobased Polydiene Architectures on Material Properties. Macromolecules, 2020, 53, 10397-10408.	2.2	44
22	Optical birefringence and molecular orientation of electrospun polycaprolactone fibers by polarizing-interference microscopy. European Polymer Journal, 2012, 48, 275-283.	2.6	43
23	The effect of polarity in the electrospinning process on PCL/chitosan nanofibres' structure, properties and efficiency of surface modification. Polymer, 2017, 124, 168-175.	1.8	41
24	Aminolysis of Various Aliphatic Polyesters in a Form of Nanofibers and Films. Polymers, 2019, 11, 1669.	2.0	38
25	Insight Into the Current Directions in Functionalized Nanocomposite Hydrogels. Frontiers in Materials, 2020, 7, .	1.2	38
26	Preparation and characterization of smart therapeutic pH-sensitive wound dressing from red cabbage extract and chitosan hydrogel. International Journal of Biological Macromolecules, 2021, 182, 1820-1831.	3.6	38
27	Effects of cooling rate on crystallinity of i-polypropylene and polyethylene terephthalate crystallized in nonisothermal conditions. Journal of Polymer Science, Part B: Polymer Physics, 1999, 37, 2821-2827.	2.4	36
28	Crystallization of polymers in variable external conditions. III: Experimental determination of kinetic characteristics. Colloid and Polymer Science, 1998, 276, 680-689.	1.0	35
29	Peroxide crosslinking of linear low-density polyethylenes with homogeneous distribution of short chain branching. Journal of Polymer Science Part A, 1995, 33, 853-862.	2.5	32
30	The Role of Electrical Polarity in Electrospinning and on the Mechanical and Structural Properties of As-Spun Fibers. Materials, 2020, 13, 4169.	1.3	32
31	Irregularly shaped DSC exotherms in the analysis of polymer crystallization. Polymer Bulletin, 2006, 57, 713-721.	1.7	30
32	Polyurethane-Nanolignin Composite Foam Coated with Propolis as a Platform for Wound Dressing: Synthesis and Characterization. Polymers, 2021, 13, 3191.	2.0	28
33	Poly(Glycerol Sebacate)–Poly(l-Lactide) Nonwovens. Towards Attractive Electrospun Material for Tissue Engineering. Polymers, 2019, 11, 2113.	2.0	27
34	â€~Intermediate phase' in poly(ethylene) as elucidated by the WAXS. Analysis of crystallization kinetics. Polymer, 2005, 46, 513-521.	1.8	26
35	Crosslinking Kinetics of Methylcellulose Aqueous Solution and Its Potential as a Scaffold for Tissue Engineering. Polymers, 2019, 11, 1772.	2.0	26
36	Effect of nanofiller incorporation on thermomechanical and toughness of poly (vinyl alcohol)-based electrospun nanofibrous bionanocomposites. Theoretical and Applied Fracture Mechanics, 2019, 99, 44-50.	2.1	26

3

#	Article	IF	Citations
37	The Effect of Selected Electrospinning Parameters on Molecular Structure of Polycaprolactone Nanofibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 365-377.	1.8	25
38	Thermo-mechanical behavior of electrospun thermoplastic polyurethane nanofibers. European Polymer Journal, 2013, 49, 3851-3856.	2.6	24
39	Kinetics of isothermal and non-isothermal crystallization of poly(vinylidene fluoride) by fast scanning calorimetry. Polymer, 2016, 82, 40-48.	1.8	24
40	Time-dependent effects on physicochemical and surface properties of PHBV fibers and films in relation to their interactions with fibroblasts. Applied Surface Science, 2021, 545, 148983.	3.1	21
41	Fabrication and characterization of electrospun bionanocomposites of poly (vinyl) Tj ETQq1 1 0.784314 rgBT /Ov	verlock 10 1.8	Tf 50 587 To 20
42	Effect of crystallinity and related surface properties on gene expression of primary fibroblasts. RSC Advances, 2022, 12, 4016-4028.	1.7	20
43	Changes in sol fraction during peroxide crosslinking of linear low-density polyethylenes with homogeneous distribution of short chain branching. Journal of Polymer Science Part A, 1995, 33, 949-955.	2.5	19
44	Degradation and related changes in supermolecular structure of poly(caprolactone) inÂvivo conditions. Polymer Degradation and Stability, 2018, 157, 70-79.	2.7	19
45	Solution Blow Spinning of Polycaprolactone—Rheological Determination of Spinnability and the Effect of Processing Conditions on Fiber Diameter and Alignment. Materials, 2021, 14, 1463.	1.3	19
46	Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. Materials, 2021, 14, 6899.	1.3	19
47	Transient and athermal effects in the crystallization of polymers. I. Isothermal crystallization. Journal of Polymer Science, Part B: Polymer Physics, 2002, 40, 1835-1849.	2.4	18
48	Determination of the melting enthalpy of \hat{l}^2 phase of poly(vinylidene fluoride). E-Polymers, 2013, 13, .	1.3	17
49	Structure and properties of polycaprolactone/chitosan nonwovens tailored by solvent systems. Biomedical Materials (Bristol), 2017, 12, 015020.	1.7	17
50	Effects of an electrostatic field on crystallization of poly(vinylidene fluoride). Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 313-323.	2.4	16
51	Solution-Blown Poly(hydroxybutyrate) and ε-Poly- <scp>I</scp> -lysine Submicro- and Microfiber-Based Sustainable Nonwovens with Antimicrobial Activity for Single-Use Applications. ACS Biomaterials Science and Engineering, 2021, 7, 3980-3992.	2.6	15
52	Shortening of electrospun PLLA fibers by ultrasonication. Micron, 2021, 145, 103066.	1.1	13
53	Aminolysis as a surface functionalization method of aliphatic polyester nonwovens: impact on material properties and biological response. RSC Advances, 2022, 12, 11303-11317.	1.7	13
54	Transient and athermal effects in the crystallization of polymers. II. Nonisothermal crystallization. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 68-79.	2.4	9

#	Article	IF	CITATIONS
55	Steady-state process and time-dependent effects in non-isothermal crystallization of poly(vinylidene) Tj ETQq $1\ 1$	0.784314 1.8	rgBT /Overlo
56	Investigations of polycaprolactone/gelatin blends in terms of their miscibility. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, 61, 629-632.	0.8	8
57	Effect of hydroxyapatite nanoparticles addition on structure properties of poly(<scp> < scp> a∈ actidea∈<i>co< i>a∈ y colide after gamma sterilization. Polymer Composites, 2018, 39, 1023-1031.</i></scp>	2.3	8
58	Targeted Drug Delivery Systems for the Treatment of Glaucoma: Most Advanced Systems Review. Polymers, 2019, 11, 1742.	2.0	8
59	Rapid one-pot synthesis of tapered star copolymers <i>via</i> ultra-fast coupling of polystyryllithium chain ends. Polymer Chemistry, 2019, 10, 1762-1768.	1.9	8
60	Crosslinking of Gelatin in Bicomponent Electrospun Fibers. Materials, 2021, 14, 3391.	1.3	8
61	Orientation distributions and melting behaviour of extended and folded-chain crystals in gel-drawn, Ultra-high-molecular-weight polyethylene. Journal of Materials Science, 1993, 28, 6409-6417.	1.7	7
62	Crystallite orientation during melting of oriented ultra-high-molecular-weight polyethylene. Colloid and Polymer Science, 1999, 277, 646-657.	1.0	6
63	Toward a Better Understanding of the Gelation Mechanism of Methylcellulose via Systematic DSC Studies. Polymers, 2022, 14, 1810.	2.0	6
64	Approximation of pole figures for the determination of crystal orientation in polymeric solids. Journal of Applied Crystallography, 1990, 23, 88-93.	1.9	5
65	Following phase transitions by depolarized light intensity. The experimental setup. Polymer Testing, 2009, 28, 36-41.	2.3	5
66	Morphology and surface chemistry of bicomponent scaffolds in terms of mesenchymal stromal cell viability. Journal of Bioactive and Compatible Polymers, 2016, 31, 423-436.	0.8	5
67	Optical microscope studies on the role of relaxation of orientation in polymer crystallization. Journal of Materials Science Letters, 2000, 19, 847-849.	0.5	4
68	Quantitative analysis of crystallization kinetics by light depolarization technique. Possibilities and limitations. European Polymer Journal, 2010, 46, 2051-2062.	2.6	3
69	Original method of imprinting pores in scaffolds for tissue engineering. Polymers for Advanced Technologies, 2021, 32, 355-367.	1.6	3
70	The dependence of the membrane structure on the non-woven forming the macropores in the 3D scaffolds preparation., 0, 64, 324-331.		3
71	Kinetics of Crystallisation of Polymers - A Review. Progress in Rubber, Plastics and Recycling Technology, 2002, 18, 195-215.	0.8	2
72	Kinetics of Crystallisation of Polymers - A Review. International Polymer Science and Technology, 2002, 29, 78-86.	0.1	1

#	Article	IF	CITATIONS
73	OPTIMIZATION OF MELTING CONDITIONS OF POLY(3-HYDROXYBUTYRATE). AIP Conference Proceedings, 2008, , .	0.3	1
74	The preliminary studies of a structure and electrospinning of new polyurethanes based on synthetic atactic poly $[(R, S)-3-hydroxybutyrate]$. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2014, 62, 55-60.	0.8	1
75	Stretching of UHMWPE film. Polimery, 1991, 36, 245-250.	0.4	1
76	<title>Errors in x-ray intensity measurements by means of 2D position-sensitive detector</title> ., 1997, 3095, 127.		0