Masayoshi Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9140536/publications.pdf Version: 2024-02-01

	2427	3579
38,704	97	181
citations	h-index	g-index
513	513	21143
docs citations	times ranked	citing authors
	citations 513	38,704 97 citations h-index 513 513

#	Article	IF	CITATIONS
1	Liquid Metal–Ionic Liquid Composite Gels for Soft, Mixed Electronic–Ionic Conductors. Macromolecular Chemistry and Physics, 2022, 223, 2100319.	2.2	2
2	Local Lithium-Ion Transport of a Ternary Sulfolane-Lithium Bis(trifluoromethanesulfonyl)amide-Carbonate Electrolyte: Experimental and First-Principles Molecular Dynamics Analysis toward Quasi-Solid-State Lithium-Ion Battery. Journal of the Electrochemical Society, 2022, 169, 020534.	2.9	3
3	Effects of polyimide sequence and monomer structures on CO2 permeation and mechanical properties of sulfonated polyimide/ionic liquid composite membranes. Polymer, 2022, 241, 124533.	3.8	7
4	Importance of Mass Transport in High Energy Density Lithium‣ulfur Batteries Under Lean Electrolyte Conditions. Batteries and Supercaps, 2022, 5, .	4.7	6
5	Electrochemical Pretreatment of Solidâ€Electrolyte Interphase Formation for Enhanced Li ₄ Ti ₅ O ₁₂ Anode Performance in a Molten Liâ^'Ca Binary Salt Hydrate Electrolyte. ChemElectroChem, 2022, 9, .	3.4	3
6	Li-Ion Transport and Solvation of a Li Salt of Weakly Coordinating Polyanions in Ethylene Carbonate/Dimethyl Carbonate Mixtures. ACS Applied Materials & Interfaces, 2022, 14, 18324-18334.	8.0	8
7	Li ⁺ transference number and dynamic ion correlations in glyme-Li salt solvate ionic liquids diluted with molecular solvents. Physical Chemistry Chemical Physics, 2022, 24, 14269-14276.	2.8	10
8	Eutectic Electrolytes Composed of LiN(SO ₂ F) ₂ and Sulfones for Li-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 10024-10034.	3.1	18
9	Comparison of Sulfur Cathode Reactions between a Concentrated Liquid Electrolyte System and a Solid-State Electrolyte System by Soft X-Ray Absorption Spectroscopy. ACS Applied Energy Materials, 2021, 4, 186-193.	5.1	10
10	Resent Advances in Self-healing Ion Gels. Nippon Gomu Kyokaishi, 2021, 94, 39-45.	0.0	0
11	Solvate electrolytes for Li and Na batteries: structures, transport properties, and electrochemistry. Physical Chemistry Chemical Physics, 2021, 23, 21419-21436.	2.8	32
12	Molecularly Tunable Polyanions for Single-Ion Conductors and Poly(solvate ionic liquids). Chemistry of Materials, 2021, 33, 524-534.	6.7	53
13	Anion effects on Li ion transference number and dynamic ion correlations in glyme–Li salt equimolar mixtures. Physical Chemistry Chemical Physics, 2021, 23, 2622-2629.	2.8	30
14	Understanding the Reductive Decomposition of Highly Concentrated Li Salt/Sulfolane Electrolytes during Li Deposition and Dissolution. ACS Applied Energy Materials, 2021, 4, 1851-1859.	5.1	24
15	Direct Observation of Photoâ€Induced Reversible Sol–Gel Transition in Block Copolymer Selfâ€Assembly Containing an Azobenzene Ionic Liquid. Macromolecular Rapid Communications, 2021, 42, e2100091.	3.9	4
16	Investigations of Ionic Transport Mechanism of Polyether-Based Polymer Electrolytes for All-Solid-State Batteries. ECS Meeting Abstracts, 2021, MA2021-01, 435-435.	0.0	0
17	Synthesis, mechanical properties, and ionic conductivity of rotaxane cross-linked polymers. Polymer, 2021, 227, 123844.	3.8	0
18	Structural Effects of Solvents on Li-Ion-Hopping Conduction in Highly Concentrated LiBF ₄ /Sulfone Solutions. Journal of Physical Chemistry B, 2021, 125, 6600-6608.	2.6	28

#	ARTICLE	IF	CITATIONS
19	Iransport Properties of Flexible Composite Electrolytes Composed of Li _{1.5} Al _{0.5} Ti _{1.5} (PO ₄) ₃ and a Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Gel Containing a Highly Concentrated Li[N(SO ₂ CF ₃) ₂]/Sulfolane Electrolyte. ACS Omega, 2021, 6,	3.5	7
20	Experimental Methods for Assembly of Dendrite-free Lithium-Sulfur Batteries. Chemistry Letters, 2021, 50, 1217-1219.	1.3	2
21	Analysis of Ionic Transport and Electrode Interfacial Reaction, and NMR One-Dimensional Imaging of Ether-Based Polymer Electrolytes. Journal of the Electrochemical Society, 2021, 168, 060501.	2.9	3
22	Rate Performance of LiCoO ₂ Half-cells Using Highly Concentrated Lithium Bis(fluorosulfonyl)amide Electrolytes and Their Relevance to Transport Properties. Electrochemistry, 2021, 89, 389-394.	1.4	8
23	Local Structure of Li ⁺ in Superconcentrated Aqueous LiTFSA Solutions. Journal of Physical Chemistry B, 2021, 125, 7477-7484.	2.6	9
24	Design of Polymer Network and Li ⁺ Solvation Enables Thermally and Oxidatively Stable, Mechanically Reliable, and Highly Conductive Polymer Gel Electrolyte for Lithium Batteries. Journal of the Electrochemical Society, 2021, 168, 090538.	2.9	6
25	Advances in Organic Ionic Materials Based on Ionic Liquids and Polymers. Bulletin of the Chemical Society of Japan, 2021, 94, 2739-2769.	3.2	10
26	Effects of Lithium Salt Concentration in Ionic Liquid Electrolytes on Battery Performance of LiNi _{0.5} Mn _{0.3} Co _{0.2} O _{2Cells. Electrochemistry, 2021, 89, 455-460.}	o>.#Grap	hitæ
27	Highly Concentrated NaN(SO ₂ F) ₂ /3-Methylsulfolane Electrolyte Solution Showing High Na-Ion Transference Number under Anion-Blocking Conditions. Electrochemistry, 2021, 89, 590-596.	1.4	3
28	Electrochemical Properties of Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Gel Electrolytes with High-Concentration Li Salt/Sulfolane for Lithium Batteries. Electrochemistry, 2021, 89, 567-572.	1.4	5
29	Li–S Battery Using Li2S Cathode. , 2021, , 403-414.		0
30	Thermodynamic aspect of sulfur, polysulfide anion and lithium polysulfide: plausible reaction path during discharge of lithium–sulfur battery. Physical Chemistry Chemical Physics, 2021, 23, 6832-6840.	2.8	11
31	Towards practical cells: combined use of titanium black as a cathode additive and sparingly solvating electrolyte for high-energy-density lithium–sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 1821-1831.	4.9	15
32	Effects of Li ion-solvent interaction on ionic transport and electrochemical properties in highly concentrated cyclic carbonate electrolytes. Journal of Non-Crystalline Solids: X, 2021, 11-12, 100071.	1.2	5
33	In Situ Impedance Spectra Analysis of Lithium-Sulfur Battery Using Sulfolane-Based Super-Concentrated Electrolyte Solution. ECS Meeting Abstracts, 2021, MA2021-02, 31-31.	0.0	1
34	Rheological and Ionic Transport Properties of Nanocomposite Electrolytes Based on Protic Ionic Liquids and Silica Nanoparticles. Langmuir, 2020, 36, 148-158.	3.5	10
35	Graphite–Lithium Sulfide Battery with a Single-Phase Sparingly Solvating Electrolyte. ACS Energy Letters, 2020, 5, 1-7.	17.4	41
36	Microphase-separated structures of ion gels consisting of ABA-type block copolymers and an ionic liquid: A key to escape from the trade-off between mechanical and transport properties. Polymer, 2020, 206, 122849.	3.8	14

#	Article	IF	CITATIONS
37	Reversible Ion-Conducting Switch by Azobenzene Molecule with Light-Controlled Sol–Gel Transitions of the PNIPAm Ion Gel. ACS Applied Materials & Interfaces, 2020, 12, 42202-42209.	8.0	32
38	Azobenzene-Based Ionic Liquid Switches Phase Separation of Poly(<i>N</i> -isopropylacrylamide) Aqueous Solutions as a Molecular Trigger, Leading to UV Shutdown of Ionic Transport. ACS Macro Letters, 2020, 9, 825-829.	4.8	14
39	Azobenzene Molecular Trigger Controlling Phase Transitions of PNIPAm in Ionic Liquids and Light-Controlled Adhesiveness. Macromolecules, 2020, 53, 4901-4907.	4.8	21
40	Role of Viscosity in Deviations from the Nernst–Einstein Relation. Journal of Physical Chemistry B, 2020, 124, 4774-4780.	2.6	22
41	Molten Li Salt Solvate-Silica Nanoparticle Composite Electrolytes with Tailored Rheological Properties. Electrochemistry, 2020, 88, 174-177.	1.4	1
42	Effects of fluoroethylene carbonate addition to Li-glyme solvate ionic liquids on their ionic transport properties and Si composite electrode performance. Electrochimica Acta, 2020, 353, 136559.	5.2	6
43	Recent progress in self-healable ion gels. Science and Technology of Advanced Materials, 2020, 21, 388-401.	6.1	24
44	Highly concentrated LiN(SO2CF3)2/dinitrile electrolytes: Liquid structures, transport properties, and electrochemistry. Journal of Chemical Physics, 2020, 152, 104502.	3.0	20
45	Effects of Polysulfide Solubility and Li Ion Transport on Performance of Li–S Batteries Using Sparingly Solvating Electrolytes. Journal of the Electrochemical Society, 2020, 167, 070531.	2.9	52
46	Effects of Anion on Liquid Structures of Ionic Liquids at Graphene Electrode Interface Analyzed by Molecular Dynamics Simulations. Batteries and Supercaps, 2020, 3, 658-667.	4.7	4
47	Solvent effects on Li ion transference number and dynamic ion correlations in glyme- and sulfolane-based molten Li salt solvates. Physical Chemistry Chemical Physics, 2020, 22, 15214-15221.	2.8	53
48	Structures and Electrochemistry of γ-Butyrolactone Solvates of Na Salts. Journal of Physical Chemistry C, 2020, 124, 15800-15811.	3.1	17
49	Liquid‣tate Optoelectronics Using Liquid Metal. Advanced Electronic Materials, 2020, 6, 1901135.	5.1	14
50	High Transference Number of Na Ion in Liquid-State Sulfolane Solvates of Sodium Bis(fluorosulfonyl)amide. Journal of Physical Chemistry C, 2020, 124, 4459-4469.	3.1	23
51	High performance electric double layer transistors using solvate ionic liquids. Japanese Journal of Applied Physics, 2020, 59, 030901.	1.5	2
52	Effect of network homogeneity on mechanical, thermal and electrochemical properties of solid polymer electrolytes prepared by homogeneous 4-arm poly(ethylene glycols). Soft Matter, 2020, 16, 4290-4298.	2.7	14
53	Speciation Analysis and Thermodynamic Criteria of Solvated Ionic Liquids: Ionic Liquids or Superconcentrated Solutions?. Journal of Physical Chemistry Letters, 2020, 11, 4517-4523.	4.6	16
54	Factors Affecting Li ⁺ Transport Properties of Molten Li Salt Solvate Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 2948-2948.	0.0	1

#	Article	IF	CITATIONS
55	High Transference Number of Li Ion in Highly Concentrated Lithium Bis(trifluoromethanesulfonyl)Amide/Dinitrile Liquid Electrolytes. ECS Meeting Abstracts, 2020, MA2020-01, 372-372.	0.0	0
56	High Transference Number of Na Ion in Highly Concentrated Sodium Bis(fluorosulfonyl)Amide/γ-Butyrolactone Electrolytes for Sodium Batteries. ECS Meeting Abstracts, 2020, MA2020-01, 238-238.	0.0	0
57	<i>Operando</i> soft X-ray absorption spectroscopic study on microporous carbon-supported sulfur cathodes. RSC Advances, 2020, 10, 39875-39880.	3.6	8
58	Preparation of Li-S Polymer Battery Utilizing High Compatibility of Carbonaceous Materials with Highly Concentrated Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 3528-3528.	0.0	0
59	Lithium Polysulfide Sparingly Solvating Electrolyte for Practical High Energy Density Lithium Sulfur Battery. ECS Meeting Abstracts, 2020, MA2020-02, 280-280.	0.0	0
60	Composite Electrolyte Composed of Li1.5Al0.5Ti1.5(PO4)3 and PVDF-Based Gel Electrolyte Containing Highly Concentrated Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 940-940.	0.0	0
61	Li-Ion Transport in Three-Layer Electrolyte of Ionic Liquid/Solid-State Electrolyte (SSE)/Ionic Liquid. ECS Meeting Abstracts, 2020, MA2020-02, 3444-3444.	0.0	0
62	(Invited) Solvate Ionic Liquids and Their Polymer Electrolytes: Possible Beyond LIB Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 797-797.	0.0	0
63	Composite Electrolytes Based on Sulfide-Based Solid Electrolytes and Highly Concentrated Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 3526-3526.	0.0	0
64	High Transference Number of Na Ion in Highly Concentrated Nan(SO2F)2/γ-Butyrolactone Electrolytes for Sodium Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 824-824.	0.0	0
65	Effect of Ionic Structure on Transport Properties of Weakly-Coordinating Polyanions Dissolved in Non-Aqueous Solvents. ECS Meeting Abstracts, 2020, MA2020-02, 3674-3674.	0.0	0
66	lonic Transport Properties in Sulfone-Based Solid Polymer Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 3527-3527.	0.0	0
67	Thermally, Electrochemically, and Mechanically Tough Polymer Electrolytes Containing a Solvate Ionic Liquid for Lithium Secondary Battery. ECS Meeting Abstracts, 2020, MA2020-02, 665-665.	0.0	0
68	Investigation of Li-Ion Sulfur Battery Using Highly Composed S8 Positive Electrode and Li-Doped C6 Negative Electrode. ECS Meeting Abstracts, 2020, MA2020-02, 285-285.	0.0	0
69	Self-Assembly of Block Copolymers in an Ionic Liquid and Properties of Resulting Ion Gels. ECS Meeting Abstracts, 2020, MA2020-02, 2966-2966.	0.0	0
70	High Transference Number of Li Ion in Highly Concentrated Lithium Bis(trifluoromethanesulfonyl)Amide/Dinitrile Liquid Electrolytes for Lithium Sulfur Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 3443-3443.	0.0	0
71	Effects of Polysulfide Solubility and Li Ion Transport on Li–S Batteries Using Sparingly Solvating Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 366-366.	0.0	0
72	(A04 Best Poster Award Winner) Effects of Anion Species on Li Ion Transport and Electrochemical Properties in Highly Concentrated Electrolytes. ECS Meeting Abstracts, 2020, MA2020-02, 822-822.	0.0	0

#	Article	IF	CITATIONS
73	(Invited) Soft Materials Containing Ionic Liquid As Solvent. ECS Meeting Abstracts, 2020, MA2020-02, 2963-2963.	0.0	0
74	Strategy and Issue for Li-S Batteries with High Energy Density. ECS Meeting Abstracts, 2020, MA2020-02, 3529-3529.	0.0	0
75	Ionic Liquid/Sulfonated Polyimide Composite Membranes: Effect of Polyimide Sequence on CO2 Transport Properties. ECS Meeting Abstracts, 2020, MA2020-02, 2902-2902.	0.0	0
76	Performance of Lithium Sulfur Batteries Consisting of Li2s/Carbon Composite Cathode. ECS Meeting Abstracts, 2020, MA2020-02, 3530-3530.	0.0	0
77	Preparation of Electron/Ion-Mixed Conducting Gel Using Liquid Metal and Ionic Liquid. ECS Meeting Abstracts, 2020, MA2020-02, 2967-2967.	0.0	0
78	Design of Sparingly Solvating Electrolytes for Li-S Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 453-453.	0.0	0
79	Thermodynamic Effect of Anion Activity on Electrochemical Reactions Involving Li ⁺ Ions in Roomâ€Temperature Ionic Liquids. ChemElectroChem, 2019, 6, 4444-4449.	3.4	12
80	Physicochemical compatibility of highly-concentrated solvate ionic liquids and a low-viscosity solvent. RSC Advances, 2019, 9, 24922-24927.	3.6	6
81	Effect of ionic liquid structure on viscoelastic behavior of hydrogen-bonded micellar ion gels. Polymer, 2019, 178, 121694.	3.8	15
82	Glyme–Li salt equimolar molten solvates with iodide/triiodide redox anions. RSC Advances, 2019, 9, 22668-22675.	3.6	5
83	Role of Cation Structure in CO2 Separation by Ionic Liquid/Sulfonated Polyimide Composite Membrane. Membranes, 2019, 9, 81.	3.0	11
84	Transport and Mechanical Properties of ABA-type Triblock Copolymer Ion Gels Correlated with Their Microstructures. Macromolecules, 2019, 52, 8430-8439.	4.8	20
85	Excellent dispersibility of single-walled carbon nanotubes in highly concentrated electrolytes and application to gel electrode for Li-S batteries. Electrochemistry Communications, 2019, 109, 106598.	4.7	12
86	Key factor governing the physicochemical properties and extent of proton transfer in protic ionic liquids: Δp <i>K</i> _a or chemical structure?. Physical Chemistry Chemical Physics, 2019, 21, 418-426.	2.8	42
87	Sulfolane-Based Highly Concentrated Electrolytes of Lithium Bis(trifluoromethanesulfonyl)amide: Ionic Transport, Li-Ion Coordination, and Li–S Battery Performance. Journal of Physical Chemistry C, 2019, 123, 14229-14238.	3.1	138
88	Effects of Sulfur Loading, Cathode Porosity, and Electrolyte Amount on Li-S Battery Performance with Solvate Ionic Liquid Electrolyte. Electrochemistry, 2019, 87, 254-259.	1.4	11
89	Solvation Structure of Poly(benzyl methacrylate) in a Solvate Ionic Liquid: Preferential Solvation of Li–Glyme Complex Cation. Journal of Physical Chemistry B, 2019, 123, 4098-4107.	2.6	2
90	Application of Protic Ionic Liquids to CO ₂ Separation in a Sulfonated Polyimide-Derived Ion Gel Membrane. ACS Applied Polymer Materials, 2019, 1, 1579-1589.	4.4	25

Masayoshi Watanabe

#	Article	IF	CITATIONS
91	Effect of Electrolyte Composition on Performance and Stability of Lithium–Sulfur Batteries. Energy Technology, 2019, 7, 1900197.	3.8	12
92	Li-ion hopping conduction in highly concentrated lithium bis(fluorosulfonyl)amide/dinitrile liquid electrolytes. Physical Chemistry Chemical Physics, 2019, 21, 9759-9768.	2.8	77
93	Cluster–Micelle Transition of a Thermo- and Photoresponsive ABC Triblock Copolymer in an Ionic Liquid. Australian Journal of Chemistry, 2019, 72, 155.	0.9	0
94	Ionic transport in highly concentrated lithium bis(fluorosulfonyl)amide electrolytes with keto ester solvents: structural implications for ion hopping conduction in liquid electrolytes. Physical Chemistry Chemical Physics, 2019, 21, 5097-5105.	2.8	35
95	Dynamic Chelate Effect on the Li ⁺ -lon Conduction in Solvate Ionic Liquids. Journal of Physical Chemistry C, 2019, 123, 30228-30233.	3.1	10
96	Polymer electrolytes based on a homogeneous poly(ethylene glycol) network and their application to polymer actuators. Electrochimica Acta, 2019, 298, 866-873.	5.2	16
97	Viscoelastic change of block copolymer ion gels in a photo-switchable azobenzene ionic liquid triggered by light. Chemical Communications, 2019, 55, 1710-1713.	4.1	26
98	Solvate Ionic Liquids for Li, Na, K, and Mg Batteries. Chemical Record, 2019, 19, 708-722.	5.8	42
99	Liquid Structures and Transport Properties of Lithium Bis(fluorosulfonyl)amide/Glyme Solvate Ionic Liquids for Lithium Batteries. Australian Journal of Chemistry, 2019, 72, 70.	0.9	21
100	Ion Gels for Ionic Polymer Actuators. , 2019, , 217-232.		0
101	Protic ionic liquids with primary alkylamine-derived cations: the dominance of hydrogen bonding on observed physicochemical properties. RSC Advances, 2018, 8, 9790-9794.	3.6	23
102	Magnesium bis(trifluoromethanesulfonyl)amide complexes with triglyme and asymmetric homologues: phase behavior, coordination structures and melting point reduction. Physical Chemistry Chemical Physics, 2018, 20, 7998-8007.	2.8	19
103	Molecular dynamics study of thermodynamic stability and dynamics of [Li(glyme)]+ complex in lithium-glyme solvate ionic liquids. Journal of Chemical Physics, 2018, 148, 193809.	3.0	31
104	Photocurable ABA triblock copolymer-based ion gels utilizing photodimerization of coumarin. RSC Advances, 2018, 8, 3418-3422.	3.6	19
105	Electrolyte Composition in Li/O ₂ Batteries with Lil Redox Mediators: Solvation Effects on Redox Potentials and Implications for Redox Shuttling. Journal of Physical Chemistry C, 2018, 122, 1522-1534.	3.1	51
106	Advanced Materials Based on Polymers and Ionic Liquids. Chemical Record, 2018, 18, 391-409.	5.8	51
107	Structure and dynamics of ionic liquids: general discussion. Faraday Discussions, 2018, 206, 291-337.	3.2	8
108	Polymer Electrolytes Containing Solvate Ionic Liquids: A New Approach To Achieve High Ionic Conductivity, Thermal Stability, and a Wide Potential Window. Chemistry of Materials, 2018, 30, 252-261.	6.7	60

#	Article	IF	CITATIONS
109	Simple combination of a protic salt and an iron halide: precursor for a Fe,ÂN and S co-doped catalyst for the oxygen reduction reaction in alkaline and acidic media. Journal of Materials Chemistry A, 2018, 6, 1138-1149.	10.3	33
110	Controlled Sol–Gel Transitions of a Thermoresponsive Polymer in a Photoswitchable Azobenzene Ionic Liquid as a Molecular Trigger. Angewandte Chemie - International Edition, 2018, 57, 227-230.	13.8	60
111	Controlled Sol–Gel Transitions of a Thermoresponsive Polymer in a Photoswitchable Azobenzene Ionic Liquid as a Molecular Trigger. Angewandte Chemie, 2018, 130, 233-236.	2.0	12
112	Photohealable ion gels based on the reversible dimerisation of anthracene. Chemical Communications, 2018, 54, 13371-13374.	4.1	24
113	Direct Evidence for Li Ion Hopping Conduction in Highly Concentrated Sulfolane-Based Liquid Electrolytes. Journal of Physical Chemistry B, 2018, 122, 10736-10745.	2.6	165
114	Solid polymer electrolytes based on polystyreneâ€polyether block copolymers having branched ether structure. Polymers for Advanced Technologies, 2018, 30, 736.	3.2	4
115	From Ionic Liquids to Solvate Ionic Liquids: Challenges and Opportunities for Next Generation Battery Electrolytes. Bulletin of the Chemical Society of Japan, 2018, 91, 1660-1682.	3.2	85
116	Sulfonated Polyimide/Ionic Liquid Composite Membranes for CO ₂ Separation: Transport Properties in Relation to Their Nanostructures. Macromolecules, 2018, 51, 7112-7120.	4.8	40
117	Photo/thermoresponsive ABC triblock copolymer-based ion gels: photoinduced structural transitions. Soft Matter, 2018, 14, 9088-9095.	2.7	18
118	Neutron scattering studies on short- and long-range layer structures and related dynamics in imidazolium-based ionic liquids. Journal of Chemical Physics, 2018, 149, 054502.	3.0	20
119	Selfâ€Healing Micellar Ion Gels Based on Multiple Hydrogen Bonding. Advanced Materials, 2018, 30, e1802792.	21.0	208
120	Tuning NaO ₂ Cube Sizes by Controlling Na ⁺ and Solvent Activity in Na–O ₂ Batteries. Journal of Physical Chemistry C, 2018, 122, 18316-18328.	3.1	29
121	Glyme–Sodium Bis(fluorosulfonyl)amide Complex Electrolytes for Sodium Ion Batteries. Journal of Physical Chemistry C, 2018, 122, 16589-16599.	3.1	34
122	lonic polymer actuators using poly(ionic liquid) electrolytes. European Polymer Journal, 2018, 106, 266-272.	5.4	38
123	Block copolymer self-assembly in ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 25123-25139.	2.8	34
124	Enhanced Electrochemical Stability of Molten Li Salt Hydrate Electrolytes by the Addition of Divalent Cations. Journal of Physical Chemistry C, 2018, 122, 20167-20175.	3.1	23
125	Ionic Liquids and Ion–conductive Polymer Membranes. Membrane, 2018, 43, 93.	0.0	0
126	Boundary layer friction of solvate ionic liquids as a function of potential. Faraday Discussions, 2017, 199, 311-322.	3.2	30

#	Article	IF	CITATIONS
127	Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews, 2017, 117, 7190-7239.	47.7	1,214
128	Stability of Glyme Solvate Ionic Liquid as an Electrolyte for Rechargeable Liâ^'O ₂ Batteries. ACS Applied Materials & Interfaces, 2017, 9, 6014-6021.	8.0	52
129	Effect of Anion in Glyme-based Electrolyte for Li-O ₂ Batteries: Stability/Solubility of Discharge Intermediate. Chemistry Letters, 2017, 46, 573-576.	1.3	14
130	Oxygen Reduction Reaction in Highly Concentrated Electrolyte Solutions of Lithium Bis(trifluoromethanesulfonyl)amide/Dimethyl Sulfoxide. Journal of Physical Chemistry C, 2017, 121, 9162-9172.	3.1	70
131	Microscopic Structure of Solvated Poly(benzyl methacrylate) in an Imidazolium-Based Ionic Liquid: High-Energy X-ray Total Scattering and All-Atom MD Simulation Study. Macromolecules, 2017, 50, 4780-4786.	4.8	27
132	Sulfonated polyimide/ionic liquid composite membranes for carbon dioxide separation. Polymer Journal, 2017, 49, 671-676.	2.7	28
133	Tetra-PEG Network Containing Ionic Liquid Synthesized via Michael Addition Reaction and Its Application to Polymer Actuator. Macromolecules, 2017, 50, 2906-2915.	4.8	51
134	A Polymer Electrolyte Containing Solvate Ionic Liquid with Increased Mechanical Strength Formed by Self-assembly of ABA-type Ionomer Triblock Copolymer. Electrochimica Acta, 2017, 235, 287-294.	5.2	25
135	Exceptionally High Electric Double Layer Capacitances of Oligomeric Ionic Liquids. Journal of the American Chemical Society, 2017, 139, 16072-16075.	13.7	42
136	Three-Dimensionally Hierarchical Ni/Ni ₃ S ₂ /S Cathode for Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2017, 9, 38477-38485.	8.0	60
137	Physicochemical Characterization of a Photoinduced Sol–Gel Transition of an Azobenzene-Containing ABA Triblock Copolymer/Ionic Liquid System. Macromolecules, 2017, 50, 6788-6795.	4.8	15
138	Thermosensitive Phase Separation Behavior of Poly(benzyl methacrylate)/Solvate Ionic Liquid Solutions. Langmuir, 2017, 33, 14105-14114.	3.5	17
139	Effect of the cation on the stability of cation–glyme complexes and their interactions with the [TFSA] ^{â°'} anion. Physical Chemistry Chemical Physics, 2017, 19, 18262-18272.	2.8	49
140	Micellization/Demicellization Self-Assembly Change of ABA Triblock Copolymers Induced by a Photoswitchable Ionic Liquid with a Small Molecular Trigger. Macromolecules, 2017, 50, 5377-5384.	4.8	14
141	Effect of Variation in Anion Type and Glyme Length on the Nanostructure of the Solvate Ionic Liquid/Graphite Interface as a Function of Potential. Journal of Physical Chemistry C, 2017, 121, 15728-15734.	3.1	14
142	Suppression of Water Absorption by Molecular Design of Ionic Liquid Electrolyte for Li–Air Battery. Advanced Energy Materials, 2017, 7, 1601753.	19.5	27
143	A Design Approach to Lithium-Ion Battery Electrolyte Based on Diluted Solvate Ionic Liquids. Journal of the Electrochemical Society, 2017, 164, A6088-A6094.	2.9	45
144	Electrochemical Deposition and Dissolution of Lithium on a Carbon Fiber Composite Electrode in a Solvate Ionic Liquid. Electrochemistry, 2017, 85, 667-670.	1.4	7

#	Article	IF	CITATIONS
145	Long-cycle-life Lithium-sulfur Batteries with Lithium Solvate Ionic Liquids. Electrochemistry, 2017, 85, 680-682.	1.4	33
146	Amphoteric water as acid and base for protic ionic liquids and their electrochemical activity when used as fuel cell electrolytes. Faraday Discussions, 2017, 206, 353-364.	3.2	16
147	Li ⁺ Local Structure in Li–Tetraglyme Solvate Ionic Liquid Revealed by Neutron Total Scattering Experiments with the ^{6/7} Li Isotopic Substitution Technique. Journal of Physical Chemistry Letters, 2016, 7, 2832-2837.	4.6	44
148	Selfâ€Assembly of Polyether Diblock Copolymers in Water and Ionic Liquids. Macromolecular Rapid Communications, 2016, 37, 1207-1211.	3.9	11
149	Design and Materialization of Ionic Liquids Based on an Understanding of Their Fundamental Properties. Electrochemistry, 2016, 84, 642-653.	1.4	21
150	Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2016, 8, 27803-27813.	8.0	24
151	Dissociation and Diffusion of Glyme-Sodium Bis(trifluoromethanesulfonyl)amide Complexes in Hydrofluoroether-Based Electrolytes for Sodium Batteries. Journal of Physical Chemistry C, 2016, 120, 23339-23350.	3.1	30
152	Photo-Dimerization Induced Dynamic Viscoelastic Changes in ABA Triblock Copolymer-Based Hydrogels for 3D Cell Culture. Chemistry of Materials, 2016, 28, 6401-6408.	6.7	51
153	From Macromolecular to Smallâ€Molecular Triggers: Facile Method toward Photoinduced LCST Phase Behavior of Thermoresponsive Polymers in Mixed Ionic Liquids Containing an Azobenzene Moiety. Macromolecular Rapid Communications, 2016, 37, 1960-1965.	3.9	20
154	Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nature Reviews Materials, 2016, 1, .	48.7	511
155	Pressure Response of a Thermoresponsive Polymer in an Ionic Liquid. Macromolecules, 2016, 49, 8249-8253.	4.8	5
156	Si/Li ₂ S Battery with Solvate Ionic Liquid Electrolyte. Electrochemistry, 2016, 84, 887-890.	1.4	27
157	SANS study on the solvated structure and molecular interactions of a thermo-responsive polymer in a room temperature ionic liquid. Physical Chemistry Chemical Physics, 2016, 18, 17881-17889.	2.8	15
158	Promising Cell Configuration for Next-Generation Energy Storage: Li ₂ S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 16053-16062.	8.0	67
159	Beyond solvents and electrolytes: Ionic liquids-based advanced functional materials. Progress in Materials Science, 2016, 77, 80-124.	32.8	129
160	Thermal and Electrochemical Stability of Tetraglyme–Magnesium Bis(trifluoromethanesulfonyl)amide Complex: Electric Field Effect of Divalent Cation on Solvate Stability. Journal of Physical Chemistry C, 2016, 120, 1353-1365.	3.1	88
161	Effects of non-equimolar lithium salt glyme solvate ionic liquid on the control of interfacial degradation in lithium secondary batteries. RSC Advances, 2016, 6, 33043-33047.	3.6	18
162	Li ⁺ Local Structure in Hydrofluoroether Diluted Li-Glyme Solvate Ionic Liquid. Journal of Physical Chemistry B, 2016, 120, 3378-3387.	2.6	81

#	Article	IF	CITATIONS
163	Bulk nanostructure of the prototypical â€~good' and â€~poor' solvate ionic liquids [Li(G4)][TFSI] and [Li(G4)][NO ₃]. Physical Chemistry Chemical Physics, 2016, 18, 17224-17236.	2.8	49
164	Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries. Journal of Power Sources, 2016, 307, 746-752.	7.8	52
165	Hierarchical Sol–Gel Transition Induced by Thermosensitive Self-Assembly of an ABC Triblock Polymer in an Ionic Liquid. Macromolecules, 2016, 49, 1414-1423.	4.8	45
166	Li ⁺ Solvation and Ionic Transport in Lithium Solvate Ionic Liquids Diluted by Molecular Solvents. Journal of Physical Chemistry C, 2016, 120, 15792-15802.	3.1	114
167	Thermosensitive soft glassy colloidal arrays of block-copolymer-grafted silica nanoparticles in an ionic liquid. Polymer Journal, 2016, 48, 289-294.	2.7	6
168	Ionic Conductivity and Viscosity of Solvate Ionic Liquids Composed of Glymes and Excess Lithium Bis(Trifluoromethylsulfonyl)Amide. Electrochemistry, 2015, 83, 824-827.	1.4	20
169	Deposition and Dissolution of Lithium through Lithium Phosphorus Oxynitride Thin Film in Lithium Bis(trifluoromethylsulfonyl)amide-Glyme Solvate Ionic Liquid. Electrochemistry, 2015, 83, 846-848.	1.4	4
170	Lithium-tin Alloy/Sulfur Battery with a Solvate Ionic Liquid Electrolyte. Electrochemistry, 2015, 83, 914-917.	1.4	17
171	Li ⁺ solvation in glyme–Li salt solvate ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 8248-8257.	2.8	222
172	Micelle Structure of Novel Diblock Polyethers in Water and Two Protic Ionic Liquids (EAN and PAN). Macromolecules, 2015, 48, 1843-1851.	4.8	25
173	Porous ionic liquids: synthesis and application. Chemical Science, 2015, 6, 3684-3691.	7.4	143
174	Hydrogen-bonding supramolecular protic salt as an "all-in-one―precursor for nitrogen-doped mesoporous carbons for CO2 adsorption. Nano Energy, 2015, 13, 376-386.	16.0	64
175	Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-Ion and Li-Sulfur Batteries. Journal of Physical Chemistry C, 2015, 119, 3957-3970.	3.1	135
176	Effect of Ionic Size on Solvate Stability of Glyme-Based Solvate Ionic Liquids. Journal of Physical Chemistry B, 2015, 119, 1523-1534.	2.6	92
177	Photoreversible Gelation of a Triblock Copolymer in an Ionic Liquid. Angewandte Chemie, 2015, 127, 3061-3065.	2.0	12
178	Photoreversible Gelation of a Triblock Copolymer in an Ionic Liquid. Angewandte Chemie - International Edition, 2015, 54, 3018-3022.	13.8	68
179	Pentaglyme–K salt binary mixtures: phase behavior, solvate structures, and physicochemical properties. Physical Chemistry Chemical Physics, 2015, 17, 2838-2849.	2.8	27
180	Li+ Ion Transport in Polymer Electrolytes Based on a Glyme-Li Salt Solvate Ionic Liquid. Electrochimica Acta, 2015, 175, 5-12.	5.2	70

#	Article	IF	CITATIONS
181	Temperature and light-induced self-assembly changes of a tetra-arm diblock copolymer in an ionic liquid. Polymer Journal, 2015, 47, 739-746.	2.7	8
182	Structural and aggregate analyses of (Li salt + glyme) mixtures: the complex nature of solvate ionic liquids. Physical Chemistry Chemical Physics, 2015, 17, 22321-22335.	2.8	78
183	One-pot pyrolysis of lithium sulfate and graphene nanoplatelet aggregates: in situ formed Li ₂ S/graphene composite for lithium–sulfur batteries. Nanoscale, 2015, 7, 14385-14392.	5.6	73
184	Adsorption of Polyether Block Copolymers at Silica–Water and Silica–Ethylammonium Nitrate Interfaces. Langmuir, 2015, 31, 7025-7031.	3.5	4
185	One-step, template-free synthesis of highly porous nitrogen/sulfur-codoped carbons from a single protic salt and their application to CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 17849-17857.	10.3	36
186	Recent Advances in Electrolytes for Lithium–Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1500117.	19.5	508
187	Proticâ€Saltâ€Derived Nitrogen/Sulfurâ€Codoped Mesoporous Carbon for the Oxygen Reduction Reaction and Supercapacitors. ChemSusChem, 2015, 8, 1608-1617.	6.8	74
188	Photo-healable ion gel with improved mechanical properties using a tetra-arm diblock copolymer containing azobenzene groups. Polymer, 2015, 78, 42-50.	3.8	28
189	Nitrogenâ€Doped Inverse Opal Carbons Derived from an Ionic Liquid Precursor for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 1080-1085.	3.4	33
190	Thermally Reversible Ion Gels with Photohealing Properties Based on Triblock Copolymer Self-Assembly. Macromolecules, 2015, 48, 5928-5933.	4.8	65
191	Upper Limit of Nitrogen Content in Carbon Materials. Angewandte Chemie - International Edition, 2015, 54, 1302-1306.	13.8	168
192	Structures of [Li(glyme)] ⁺ complexes and their interactions with anions in equimolar mixtures of glymes and Li[TFSA]: analysis by molecular dynamics simulations. Physical Chemistry Chemical Physics, 2015, 17, 126-129.	2.8	87
193	Carbon materialization of ionic liquids: from solvents to materials. Materials Horizons, 2015, 2, 168-197.	12.2	165
194	Nanostructure of [Li(G4)] TFSI and [Li(G4)] NO ₃ solvate ionic liquids at HOPG and Au(111) electrode interfaces as a function of potential. Physical Chemistry Chemical Physics, 2015, 17, 325-333.	2.8	61
195	1.ã,°ãƒ©ã,₿ƒç³»ãƒªãƒã,¦ãƒæº¶åº'å'Œã,₿,ªãƒ³æ¶²ä½"ã₽åŒ−å¦ã•応ç". Electrochemistry, 2014, 82, 1079-]	1084.	3
196	Binary Protic Ionic Liquid Mixtures as a Proton Conductor: High Fuel Cell Reaction Activity and Facile Proton Transport. Journal of Physical Chemistry C, 2014, 118, 27631-27639.	3.1	73
197	New Ionic Lubricants for Magnetic Thin-Film Media. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	6
198	Proton-conductivity-enhancing Ionic Liquid Consisting of Guanidine and Excess Trifluoromethanesulfonic Acid. Chemistry Letters, 2014, 43, 649-651.	1.3	7

#	Article	IF	CITATIONS
199	Polymer and Ionic Liquid Electrolytes for Advanced Lithium Batteries. Nanostructure Science and Technology, 2014, , 51-61.	0.1	1
200	Energy applications of ionic liquids. Energy and Environmental Science, 2014, 7, 232-250.	30.8	1,455
201	Criteria for solvate ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 8761.	2.8	240
202	Physicochemical properties of pentaglyme–sodium bis(trifluoromethanesulfonyl)amide solvate ionic liquid. Physical Chemistry Chemical Physics, 2014, 16, 11737-11746.	2.8	60
203	Chelate Effects in Glyme/Lithium Bis(trifluoromethanesulfonyl)amide Solvate Ionic Liquids, Part 2: Importance of Solvate-Structure Stability for Electrolytes of Lithium Batteries. Journal of Physical Chemistry C, 2014, 118, 17362-17373.	3.1	137
204	Gelation of Solvate Ionic Liquid by Self-Assembly of Block Copolymer and Characterization as Polymer Electrolyte. Macromolecules, 2014, 47, 6009-6016.	4.8	78
205	Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme–Li Salt Solvate Ionic Liquids. Journal of Physical Chemistry C, 2014, 118, 20246-20256.	3.1	155
206	Solubility of Poly(methyl methacrylate) in Ionic Liquids in Relation to Solvent Parameters. Langmuir, 2014, 30, 3228-3235.	3.5	47
207	Direct Synthesis of Nitrogen-Doped Carbon Materials from Protic Ionic Liquids and Protic Salts: Structural and Physicochemical Correlations between Precursor and Carbon. Chemistry of Materials, 2014, 26, 2915-2926.	6.7	156
208	Chelate Effects in Glyme/Lithium Bis(trifluoromethanesulfonyl)amide Solvate Ionic Liquids. I. Stability of Solvate Cations and Correlation with Electrolyte Properties. Journal of Physical Chemistry B, 2014, 118, 5144-5153.	2.6	194
209	Protic Ionic Liquids and Salts as Versatile Carbon Precursors. Journal of the American Chemical Society, 2014, 136, 1690-1693.	13.7	216
210	Tuning of Sol–Gel Transition Temperatures for Thermoreversible Ion Gels. Chemistry Letters, 2014, 43, 204-206.	1.3	23
211	Ion Gels for Ionic Polymer Actuators. , 2014, , 141-156.		3
212	Heterogeneous Slow Dynamics of Imidazolium-Based Ionic Liquids Studied by Neutron Spin Echo. Journal of Physical Chemistry B, 2013, 117, 2773-2781.	2.6	122
213	Comparative Study on Physicochemical Properties of Protic Ionic Liquids Based on Allylammonium and Propylammonium Cations. Journal of Chemical & Engineering Data, 2013, 58, 2724-2732.	1.9	50
214	Phase Diagrams and Solvate Structures of Binary Mixtures of Glymes and Na Salts. Journal of Physical Chemistry B, 2013, 117, 15072-15085.	2.6	63
215	Proton transport in acid containing choline dihydrogen phosphate membranes for fuel cell. Electrochimica Acta, 2013, 111, 41-48.	5.2	7
216	Ionic Liquid Electrolytes for Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 20531-20541.	3.1	259

#	Article	IF	CITATIONS
217	Anionic Effects on Solvate Ionic Liquid Electrolytes in Rechargeable Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 20509-20516.	3.1	166
218	Alternating copolymer based on sulfonamideâ€substituted phenylmaleimide and vinyl monomers as polymer electrolyte membrane. Journal of Polymer Science Part A, 2013, 51, 2233-2242.	2.3	8
219	Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids. Journal of Chemical Physics, 2013, 139, 174504.	3.0	63
220	Electrochemical properties of protic ionic liquids: correlation between open circuit potential for H2/O2 cells under non-humidified conditions and ΔpKa. RSC Advances, 2013, 3, 4141.	3.6	45
221	Charge/discharge performances of glyme–lithium salt equimolar complex electrolyte for lithium secondary batteries. Journal of Power Sources, 2013, 243, 323-327.	7.8	21
222	EQCM Measurement of Deposition and Dissolution of Lithium in Glyme-Li Salt Molten Complex. Journal of the Electrochemical Society, 2013, 160, A1529-A1533.	2.9	38
223	Printable Polymer Actuators from Ionic Liquid, Soluble Polyimide, and Ubiquitous Carbon Materials. ACS Applied Materials & Interfaces, 2013, 5, 6307-6315.	8.0	63
224	Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 4431-4440.	3.1	182
225	Thermoreversible Nanogel Shuttle between Ionic Liquid and Aqueous Phases. Langmuir, 2013, 29, 13661-13665.	3.5	23
226	Unusual Li ⁺ Ion Solvation Structure in Bis(fluorosulfonyl)amide Based Ionic Liquid. Journal of Physical Chemistry C, 2013, 117, 19314-19324.	3.1	133
227	Solvate Ionic Liquid Electrolyte for Li–S Batteries. Journal of the Electrochemical Society, 2013, 160, A1304-A1310.	2.9	421
228	Structural Study on the UCST-Type Phase Separation of Poly(<i>N</i> -isopropylacrylamide) in Ionic Liquid. Macromolecules, 2013, 46, 1101-1106.	4.8	31
229	Novel Ionic Lubricants for Magnetic Thin Film Media. IEEE Transactions on Magnetics, 2013, 49, 3756-3759.	2.1	11
230	Protic ionic liquids: Fuel cell applications. MRS Bulletin, 2013, 38, 560-566.	3.5	170
231	Solvate Ionic Liquid, [Li(triglyme)1][NTf2], as Electrolyte for Rechargeable Li–Air Battery: Discharge Depth and Reversibility. Chemistry Letters, 2013, 42, 1053-1055.	1.3	29
232	Intermolecular Interactions in Li ⁺ â€glyme and Li ⁺ â€glyme–TFSA ^{â^'} Complexes: Relationship with Physicochemical Properties of [Li(glyme)][TFSA] Ionic Liquids. ChemPhysChem, 2013, 14, 1993-2001.	2.1	79
233	Effects of Carbon Electrode Materials on Performance of Ionic Polymer Actuators Having Electric Double-Layer Capacitor Structure. Electrochemistry, 2013, 81, 849-852.	1.4	15
234	Specific Solvation of Benzyl Methacrylate in 1-Ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)amide Ionic Liquid. Analytical Sciences, 2013, 29, 311-314.	1.6	27

#	Article	IF	CITATIONS
235	Recent Developments in Electrochemical Devices Using Ionic Liquid Electrolytes. Journal of the Vacuum Society of Japan, 2013, 56, 67-71.	0.3	2
236	Room-Temperature Ionic Liquid Electrolytes for Alkali Metal-Sulfur Batteries. Hyomen Kagaku, 2013, 34, 309-314.	0.0	1
237	Colloidal Stability in Ionic Liquids and Relevant Soft Materials. Materials Research Society Symposia Proceedings, 2012, 1473, 7.	0.1	4
238	Correlation between Battery Performance and Lithium Ion Diffusion in Glyme–Lithium Bis(trifluoromethanesulfonyl)amide Equimolar Complexes. Journal of the Electrochemical Society, 2012, 159, A1005-A1012.	2.9	77
239	4.ã,³ãƒã,╋ƒ‰å^†æ•£åª'体ãëã⊷ã┥ã®ã,₿ªãƒ³æ¶²ä½". Electrochemistry, 2012, 80, 596-601.	1.4	1
240	Protic Ionic Liquids Based on a Super-Strong Base: Correlation between Physicochemical Properties and ΔpKa. Materials Research Society Symposia Proceedings, 2012, 1473, 1.	0.1	3
241	Solvate Ionic Liquids and Their Application to Lithium Batteries: Glyme-Lithium Bis(fluorosulfonyl)amide Equimolar Complexes. Materials Research Society Symposia Proceedings, 2012, 1473, 20.	0.1	2
242	Polymers in Ionic Liquids: Dawn of Neoteric Solvents and Innovative Materials. Bulletin of the Chemical Society of Japan, 2012, 85, 33-50.	3.2	146
243	Belousov–Zhabotinsky Reaction in Protic Ionic Liquids. Angewandte Chemie - International Edition, 2012, 51, 11991-11994.	13.8	35
244	Unlocking of interlocked heteropolymer gel by light: photoinduced volume phase transition in an ionic liquid from a metastable state to an equilibrium phase. Chemical Communications, 2012, 48, 5133.	4.1	19
245	Heat Capacities and Glass Transitions of Ion Gels. Journal of Physical Chemistry B, 2012, 116, 10935-10940.	2.6	16
246	Protic Ionic Liquids Based on Decahydroisoquinoline: Lost Superfragility and Ionicity-Fragility Correlation. Journal of Physical Chemistry B, 2012, 116, 63-70.	2.6	37
247	Structural Analysis of High Performance Ion-Gel Comprising Tetra-PEG Network. Macromolecules, 2012, 45, 3902-3909.	4.8	42
248	Structural Heterogeneity and Unique Distorted Hydrogen Bonding in Primary Ammonium Nitrate Ionic Liquids Studied by High-Energy X-ray Diffraction Experiments and MD Simulations. Journal of Physical Chemistry B, 2012, 116, 2801-2813.	2.6	116
249	Driving Mechanisms of Ionic Polymer Actuators Having Electric Double Layer Capacitor Structures. Journal of Physical Chemistry B, 2012, 116, 5080-5089.	2.6	79
250	Light-Controlled Reversible Micellization of a Diblock Copolymer in an Ionic Liquid. Macromolecules, 2012, 45, 7566-7573.	4.8	71
251	Thermoreversible high-temperature gelation of an ionic liquid with poly(benzyl methacrylate-b-methyl) Tj ETQq1 1	0,784314	rgBT /Over
252	Microscopic insights into ion gel dynamics using neutron spectroscopy. Soft Matter, 2012, 8, 7888.	2.7	24

#	Article	IF	CITATIONS
253	High-performance ion gel with tetra-PEG network. Soft Matter, 2012, 8, 1756-1759.	2.7	129
254	Glyme–Lithium Salt Equimolar Molten Mixtures: Concentrated Solutions or Solvate Ionic Liquids?. Journal of Physical Chemistry B, 2012, 116, 11323-11331.	2.6	348
255	Polymer Actuators Using Ion-Gel Electrolytes Prepared by Self-Assembly of ABA-Triblock Copolymers. Macromolecules, 2012, 45, 401-409.	4.8	159
256	Effects of Polymer Structure on Properties of Sulfonated Polyimide/Protic Ionic Liquid Composite Membranes for Nonhumidified Fuel Cell Applications. ACS Applied Materials & Interfaces, 2012, 4, 1783-1790.	8.0	94
257	Physicochemical properties determined by ΔpKa for protic ionic liquids based on an organic super-strong base with various Brønsted acids. Physical Chemistry Chemical Physics, 2012, 14, 5178.	2.8	201
258	From Colloidal Stability in Ionic Liquids to Advanced Soft Materials Using Unique Media. Langmuir, 2011, 27, 9105-9115.	3.5	136
259	UCST Phase Transition of Azobenzene-Containing Random Copolymer in an Ionic Liquid. Macromolecules, 2011, 44, 6908-6914.	4.8	76
260	Liquid Structure of and Li ⁺ Ion Solvation in Bis(trifluoromethanesulfonyl)amide Based Ionic Liquids Composed of 1-Ethyl-3-methylimidazolium and <i>N</i> -Methyl- <i>N</i> -propylpyrrolidinium Cations. Journal of Physical Chemistry B, 2011, 115, 12179-12191.	2.6	102
261	Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme–Li salt molten complex electrolytes. Chemical Communications, 2011, 47, 8157.	4.1	205
262	Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme–Lithium Salt Equimolar Complexes. Journal of the American Chemical Society, 2011, 133, 13121-13129.	13.7	663
263	Change from Glyme Solutions to Quasi-ionic Liquids for Binary Mixtures Consisting of Lithium Bis(trifluoromethanesulfonyl)amide and Glymes. Journal of Physical Chemistry C, 2011, 115, 18384-18394.	3.1	174
264	Physicochemical and Electrochemical Properties of Glyme-LiN(SO2F)2 Complex for Safe Lithium-ion Secondary Battery Electrolyte. Journal of the Electrochemical Society, 2011, 158, A769.	2.9	61
265	Hydrogen bonds in protic ionic liquids and their correlation with physicochemical properties. Chemical Communications, 2011, 47, 12676.	4.1	103
266	Electric Double‣ayer Capacitance of Inverse Opal Carbon Prepared Through Carbonization of Poly(Furfuryl Alcohol) in Contact with Polymer Gel Electrolyte Containing Ionic Liquid. Polymers for Advanced Technologies, 2011, 22, 1254-1260.	3.2	29
267	A Mesothermal Fuel Cell using Diethylmethylammonium Trifluoromethanesulfonate Absorbed Membrane with H3PO4 Addition and Various Amount of Electrolyte Loading in Catalyst Layer. Electrochemistry, 2011, 79, 377-380.	1.4	5
268	Structural effects of polyethers and ionic liquids in their binary mixtures on lower critical solution temperature liquid-liquid phase separation. Polymer Journal, 2011, 43, 242-248.	2.7	79
269	Limiting current density in bis(trifluoromethylsulfonyl)amide-based ionic liquid for lithium batteries. Journal of Power Sources, 2011, 196, 2264-2268.	7.8	50
270	Favorable combination of positive and negative electrode materials with glyme–Li salt complex electrolytes in lithium ion batteries. Journal of Power Sources, 2011, 196, 3874-3880.	7.8	30

#	Article	IF	CITATIONS
271	Structural aspects of the LCST phase behavior of poly(benzyl methacrylate) in room-temperature ionic liquid. Polymer, 2011, 52, 1589-1595.	3.8	58
272	LiMnPO4 Nanoparticles Prepared through the Reaction between Li3PO4 and Molten Aqua-complex of MnSO4. Journal of the Electrochemical Society, 2011, 158, A1275.	2.9	26
273	Applications of Ionic Liquids as Electrolyte for Energy Devices. Journal of Ion Exchange, 2011, 22, 58-64.	0.3	1
274	Limiting Current Density in Ionic Liquid Electrolyte for Lithium Batteries. Electrochemistry, 2010, 78, 349-352.	1.4	14
275	Physicochemical Properties of Glyme–Li Salt Complexes as a New Family of Room-temperature Ionic Liquids. Chemistry Letters, 2010, 39, 753-755.	1.3	260
276	Performance of Nonhumidified Intermediate-temperature Fuel Cells Based on Protic Ionic Liquids Prepared from Oxo and Amide Acids. Chemistry Letters, 2010, 39, 678-679.	1.3	12
277	Silica Colloidal Suspensions in Ionic Liquids: Colloidal Stability and Fabrication of Ion Gels on the basis of Colloidal Self-Assembly. ACS Symposium Series, 2010, , 199-210.	0.5	1
278	Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries. Journal of Power Sources, 2010, 195, 6207-6211.	7.8	37
279	New glyme–cyclic imide lithium salt complexes as thermally stable electrolytes for lithium batteries. Journal of Power Sources, 2010, 195, 6095-6100.	7.8	144
280	Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. Journal of Power Sources, 2010, 195, 5909-5914.	7.8	149
281	Resonance shear measurement of nanoconfined ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 4066.	2.8	186
282	Nonhumidified Intermediate Temperature Fuel Cells Using Protic Ionic Liquids. Journal of the American Chemical Society, 2010, 132, 9764-9773.	13.7	426
283	Thermosensitive, Soft Glassy and Structural Colored Colloidal Array in Ionic Liquid: Colloidal Glass to Gel Transition. Langmuir, 2010, 26, 18031-18038.	3.5	52
284	Soft Glassy Colloidal Arrays in an Ionic Liquid: Colloidal Glass Transition, Ionic Transport, and Structural Color in Relation to Microstructure. Journal of Physical Chemistry B, 2010, 114, 13095-13103.	2.6	67
285	Solid-state dye-sensitized solar cells using polymerized ionic liquid electrolyte with platinum-free counter electrode. Physical Chemistry Chemical Physics, 2010, 12, 1916.	2.8	63
286	Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. Physical Chemistry Chemical Physics, 2010, 12, 1649.	2.8	477
287	Development of a Polymer Actuator Utilizing Ion-Gel as Electrolyte. , 2010, , 315-328.		1
288	Development of a soft actuator using a photocurable ionic gel. Journal of Micromechanics and Microengineering, 2009, 19, 035005.	2.6	30

#	Article	IF	CITATIONS
289	Thermodynamic study on phase transitions of poly(benzyl methacrylate) in ionic liquid solvents. Pure and Applied Chemistry, 2009, 81, 1829-1841.	1.9	56
290	Role of the thermoresponsive segment in determining the redox properties of phenothiazine-labeled poly(ethoxyethyl glycidyl ether)-block-poly(ethylene oxide). Journal of Electroanalytical Chemistry, 2009, 632, 59-63.	3.8	1
291	Thermosensitive Self-Assembly of Diblock Copolymers with Lower Critical Micellization Temperatures in an Ionic Liquid. Macromolecules, 2009, 42, 6239-6244.	4.8	47
292	Lower Critical Solution Temperature Phase Behavior of Linear Polymers in Imidazolium-Based Ionic Liquids: Effects of Structural Modifications. Langmuir, 2009, 25, 3820-3824.	3.5	72
293	Thermal Response of Poly(ethoxyethyl glycidyl ether) Grafted on Gold Surfaces Probed on the Basis of Temperature-Dependent Water Wettability. Langmuir, 2009, 25, 2837-2841.	3.5	18
294	Colloidal Interaction in Ionic Liquids: Effects of Ionic Structures and Surface Chemistry on Rheology of Silica Colloidal Dispersions. Langmuir, 2009, 25, 825-831.	3.5	122
295	Molecular Dynamics Simulations of Ionic Liquids: Cation and Anion Dependence of Self-Diffusion Coefficients of Ions. Journal of Physical Chemistry B, 2009, 113, 10641-10649.	2.6	236
296	Doubly Thermosensitive Self-Assembly of Diblock Copolymers in Ionic Liquids. Macromolecules, 2009, 42, 1315-1320.	4.8	88
297	Photoisomerization-Induced Tunable LCST Phase Separation of Azobenzene-Containing Polymers in an Ionic Liquid. Langmuir, 2009, 25, 8845-8848.	3.5	55
298	Electrochromism based on structural colour changes in a polyelectrolyte gel. Journal of Materials Chemistry, 2009, 19, 4778.	6.7	57
299	Novel styrene/N-phenylmaleimidealternating copolymers with pendant sulfonimide acid groups for polymer electrolyte fuel cell applications. Journal of Materials Chemistry, 2009, 19, 514-521.	6.7	20
300	A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours. Chemical Communications, 2009, , 3603.	4.1	100
301	Hydrophobic Protic Ionic Liquid for Nonhumidified Intermediate-temperature Fuel Cells. Chemistry Letters, 2009, 38, 692-693.	1.3	35
302	Kinetic Salt Effects on an Ionic Reaction in Ionic Liquid/Methanol Mixtures —Viscosity and Coulombic Screening Effects—. Chemistry Letters, 2009, 38, 236-237.	1.3	11
303	Anionic polymerization of methyl methacrylate in an ionic liquid. Polymers for Advanced Technologies, 2008, 19, 1441-1444.	3.2	37
304	Colloidal Stability of Bare and Polymer-Grafted Silica Nanoparticles in Ionic Liquids. Langmuir, 2008, 24, 5253-5259.	3.5	167
305	Quaternary Ammonium Room-Temperature Ionic Liquid/Lithium Salt Binary Electrolytes: Electrochemical Study. Journal of the Electrochemical Society, 2008, 155, A421.	2.9	96
306	Macromolecules in Ionic Liquids: Progress, Challenges, and Opportunities. Macromolecules, 2008, 41, 3739-3749.	4.8	576

#	Article	IF	CITATIONS
307	Nanocomposite Ion Gels Based on Silica Nanoparticles and an Ionic Liquid: Ionic Transport, Viscoelastic Properties, and Microstructure. Journal of Physical Chemistry B, 2008, 112, 9013-9019.	2.6	200
308	LCST-type liquid–liquid phase separation behaviour of poly(ethylene oxide) derivatives in an ionic liquid. Chemical Communications, 2008, , 4939.	4.1	109
309	Inverse Opal Carbons Derived from a Polymer Precursor as Electrode Materials for Electric Double-Layer Capacitors. Journal of the Electrochemical Society, 2008, 155, K42.	2.9	49
310	Development of microactuators using photopatternable ionic gel. , 2008, , .		0
311	Effects of Alkyl Chain in Imidazolium-Type Room-Temperature Ionic Liquids as Lithium Secondary Battery Electrolytes. Electrochemical and Solid-State Letters, 2007, 10, A237.	2.2	54
312	Difference in Lower Critical Solution Temperature Behavior between Random Copolymers and a Homopolymer Having Solvatophilic and Solvatophobic Structures in an Ionic Liquidâ€. Journal of Physical Chemistry B, 2007, 111, 4750-4754.	2.6	69
313	Dye-Sensitized TiO2Solar Cells Using Imidazolium-Type Ionic Liquid Crystal Systems as Effective Electrolytesâ€. Journal of Physical Chemistry B, 2007, 111, 4763-4769.	2.6	211
314	Imidazolium-Based Room-Temperature Ionic Liquid for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2007, 154, A173.	2.9	195
315	Proton-Conducting Properties of a BrĄ̃nsted Acidâ^'Base Ionic Liquid and Ionic Melts Consisting of Bis(trifluoromethanesulfonyl)imide and Benzimidazole for Fuel Cell Electrolytes. Journal of Physical Chemistry C, 2007, 111, 1541-1548.	3.1	154
316	Reaction between Diiodide Anion Radicals in Ionic Liquidsâ€. Journal of Physical Chemistry B, 2007, 111, 4807-4811.	2.6	47
317	Preparation and Solution Behavior of a Thermoresponsive Diblock Copolymer of Poly(ethyl glycidyl) Tj ETQq1 1 C	.784314 r	gBT_/Overlo
318	Lower Critical Solution Temperature Behavior of Linear Polymers in Ionic Liquids and the Corresponding Volume Phase Transition of Polymer Gels. Langmuir, 2007, 23, 988-990.	3.5	157
319	Acceleration of Redox Diffusion and Charge-Transfer Rates in an Ionic Liquid with Nanoparticle Addition. Electrochemical and Solid-State Letters, 2007, 10, F23.	2.2	69
320	BrÃ,nsted acid–base ionic liquids for fuel cell electrolytes. Chemical Communications, 2007, , 2539-2541.	4.1	313
321	A Thermally Adjustable Multicolor Photochromic Hydrogel. Angewandte Chemie - International Edition, 2007, 46, 1688-1692.	13.8	266
322	An Electro―and Thermochromic Hydrogel as a Full olor Indicator. Advanced Materials, 2007, 19, 2807-2812.	21.0	169
323	Effect of core-shell micelle formation on the redox properties of phenothiazine-labeled poly(ethyl) Tj ETQq1 1 0.7	′84314 rgE	3T /Overlock
294	Amphiphilic ruthenium dye as an ideal sensitizer in conversion of light to electricity using ionic	4.7	52

liquid crystal electrolyte. Electrochemistry Communications, 2007, 9, 1134-1138.

4.7 53

#	Article	IF	CITATIONS
325	Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material. Chemical Communications, 2006, , 544-545.	4.1	133
326	Physicochemical Properties and Structures of Room-Temperature lonic Liquids. 3. Variation of Cationic Structures. Journal of Physical Chemistry B, 2006, 110, 2833-2839.	2.6	593
327	Lithium Secondary Batteries Using Modified-Imidazolium Room-Temperature Ionic Liquid. Journal of Physical Chemistry B, 2006, 110, 10228-10230.	2.6	333
328	Preparations and Optical Properties of Ordered Arrays of Submicron Gel Particles:Â Interconnected State and Trapped State. Langmuir, 2006, 22, 4403-4407.	3.5	69
329	Preparation, Characterization, and Transport Properties of Li+ -Conducting Ionic Liquids. ECS Meeting Abstracts, 2006, , .	0.0	0
330	Design of Polymer Electrolytes to Realize High Lithium-Ionic Conductivity with Fast Interfacial Charge Transfer. Kobunshi Ronbunshu, 2006, 63, 1-10.	0.2	3
331	Specific Charge Transport in Ionic Liquids and Ion Gels and the Importance in Material Science. Kobunshi Ronbunshu, 2006, 63, 31-40.	0.2	7
332	Upper Critical Solution Temperature Behavior of Poly(N-isopropylacrylamide) in an Ionic Liquid and Preparation of Thermo-sensitive Nonvolatile Gels. Chemistry Letters, 2006, 35, 964-965.	1.3	141
333	Immobilization of Horseradish Peroxidase on Binary Self-assembled Monolayers with Carboxyl- and Hydroxyl-terminal Groups: Dependence of the Amount of Immobilized Enzymes and Their Electrocatalytic Activity on the Monolayer Composition. Electrochemistry, 2006, 74, 186-188.	1.4	2
334	Effect of the modification of phenothiazine-labeled poly(ethylene oxide) on the solubility and enzymatic electrocatalytic reaction of glucose oxidase in water/1-butyl-3-methylimidazolium tetrafluoroborate mixtures. Electrochemistry Communications, 2006, 8, 45-50.	4.7	8
335	How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. Journal of Physical Chemistry B, 2006, 110, 19593-19600.	2.6	1,106
336	BrÃ,nsted acid–base and –polybase complexes as electrolytes for fuel cells under non-humidifying conditions. Electrochimica Acta, 2005, 50, 4015-4021.	5.2	75
337	Ion transport properties of lithium ionic liquids and their ion gels. Electrochimica Acta, 2005, 50, 3872-3877.	5.2	117
338	Diffusion in Ionic Liquids and Correlation with Ionic Transport Behavior. , 2005, , 55-74.		9
339	Room-Temperature Ionic Liquid-Organic Solvent Mixtures: Conductivity and Ionic Association. Electrochemistry, 2005, 73, 620-622.	1.4	51
340	Ion Gels Prepared by In Situ Radical Polymerization of Vinyl Monomers in Room Temperature Ionic Liquids as Novel Highly Conductive Polymer Electrolytes. ACS Symposium Series, 2005, , 119-132.	0.5	3
341	Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation. Journal of Physical Chemistry B, 2005, 109, 6103-6110.	2.6	1,552
342	Reversibility of Lithium Secondary Batteries Using a Room-Temperature Ionic Liquid Mixture and Lithium Metal. Electrochemical and Solid-State Letters, 2005, 8, A577.	2.2	129

#	Article	IF	CITATIONS
343	Electric Double-Layer Capacitors Using "Bucky Gels―Consisting of an Ionic Liquid and Carbon Nanotubes. Journal of the Electrochemical Society, 2005, 152, A1913.	2.9	83
344	Distinct Difference in Ionic Transport Behavior in Polymer Electrolytes Depending on the Matrix Polymers and Incorporated Salts. Journal of Physical Chemistry B, 2005, 109, 3886-3892.	2.6	154
345	Electron Transfer Reactions of Glucose Oxidase at Au(111) Electrodes Modified with Phenothiazine Derivatives. Analytical Chemistry, 2005, 77, 4142-4147.	6.5	7
346	BrÃ,nsted Acid-Base Ionic Liquids as Fuel Cell Electrolytes under Nonhumidifying Conditions. ACS Symposium Series, 2005, , 199-215.	0.5	3
347	Anomaly of charge transport of an iodide/tri-iodide redox couple in an ionic liquid and its importance in dye-sensitized solar cells. Chemical Communications, 2005, , 2107.	4.1	148
348	Ionic liquid crystal as a hole transport layer of dye-sensitized solar cells. Chemical Communications, 2005, , 740.	4.1	199
349	Ion Gels Prepared by in Situ Radical Polymerization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes. Journal of the American Chemical Society, 2005, 127, 4976-4983.	13.7	874
350	Magnitude and Directionality of Interaction in Ion Pairs of Ionic Liquids:  Relationship with Ionic Conductivity. Journal of Physical Chemistry B, 2005, 109, 16474-16481.	2.6	468
351	Synthesis, Characterization, and Copolymerization of a Series of Novel Acid Monomers Based on Sulfonimides for Proton Conducting Membranes. Macromolecules, 2004, 37, 5572-5577.	4.8	20
352	Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species. Journal of Physical Chemistry B, 2004, 108, 16593-16600.	2.6	1,234
353	Proton exchange membranes based on sulfonimide for fuel cell applications. Electrochimica Acta, 2004, 50, 633-638.	5.2	27
354	Preparation and transport properties of novel lithium ionic liquids. Electrochimica Acta, 2004, 50, 305-309.	5.2	114
355	High performance dye-sensitized solar cells using ionic liquids as their electrolytes. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 87-92.	3.9	295
356	Application of an ionic liquid-based electrolyte to a mm sized dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 129-135.	3.9	57
357	IR spectroscopy and quantum mechanical calculations of lithium ion transport conditions in a single ion conducting polymer electrolyte. Polymer, 2004, 45, 9057-9065.	3.8	16
358	Effect of binder polymer structures used in composite cathodes on interfacial charge transfer processes in lithium polymer batteries. Electrochimica Acta, 2004, 50, 379-383.	5.2	30
359	Surface activity and redox behavior of a non-ionic surfactant containing a phenothiazine group. Colloids and Surfaces B: Biointerfaces, 2004, 38, 167-173.	5.0	12
360	Temperature-Induced Reversible Change in the Redox Response in Phenothiazine-Labeled Poly(ethoxyethyl glycidyl ether) and Its Application to the Thermal Control of the Catalytic Reaction of Glucose Oxidase. Langmuir, 2004, 20, 8786-8791.	3.5	11

#	Article	IF	CITATIONS
361	Design of Polymer Electrolytes Based on a Lithium Salt of a Weakly Coordinating Anion to Realize High Ionic Conductivity with Fast Charge-Transfer Reaction. Journal of Physical Chemistry B, 2004, 108, 11995-12002.	2.6	43
362	Effects of Novel Boric Acid Esters on Ion Transport Properties of Lithium Salts in Nonaqueous Electrolyte Solutions and Polymer Electrolytes. Journal of Physical Chemistry B, 2004, 108, 19518-19526.	2.6	29
363	Effect of a Modification Site on the Electron-Transfer Reaction of Glucose Oxidase Hybrids Modified with Phenothiazine via a Poly(ethylene oxide) Spacer. Langmuir, 2004, 20, 9177-9183.	3.5	4
364	BrÃ,nsted Acidâ^'Base Ionic Liquids as Proton-Conducting Nonaqueous Electrolytes. Journal of Physical Chemistry B, 2003, 107, 4024-4033.	2.6	652
365	Template Synthesis and Optical Properties of Chameleonic Poly(N-isopropylacrylamide) Gels Using Closest-Packed Self-Assembled Colloidal Silica Crystals. Advanced Materials, 2003, 15, 199-201.	21.0	160
366	Simple and Precise Preparation of a Porous Gel for a Colorimetric Glucose Sensor by a Templating Technique. Angewandte Chemie - International Edition, 2003, 42, 4197-4200.	13.8	237
367	Characterization and ionic transport properties of nano-composite electrolytes containing a lithium salt of a superweak aluminate anion. Electrochimica Acta, 2003, 48, 2085-2091.	5.2	34
368	Synthesis of a Lewis-acidic boric acid ester monomer and effect of its addition to electrolyte solutions and polymer gel electrolytes on their ion transport properties. Electrochimica Acta, 2003, 48, 2105-2112.	5.2	32
369	Inter/Intramolecular Interaction and Chiral Recognition of Water-Soluble Copolymers and Their Hydrogels Containing an Optically Active Group. Langmuir, 2003, 19, 8542-8549.	3.5	10
370	Tuning Structural Color Changes of Porous Thermosensitive Gels through Quantitative Adjustment of the Cross-Linker in Pre-gel Solutions. Langmuir, 2003, 19, 9104-9106.	3.5	132
371	Synthesis and Properties of Ion-Conducting Poly(anthrylacetylene) Derivatives. Macromolecules, 2003, 36, 4786-4789.	4.8	7
372	Comparison of Catalytic Electrochemistry of Glucose Oxidase between Covalently Modified and Freely Diffusing Phenothiazine-Labeled Poly(ethylene oxide) Mediator Systems. Journal of Physical Chemistry B, 2003, 107, 8834-8839.	2.6	13
373	Electrical Communication between Glucose Oxidase and Electrodes Mediated by Phenothiazine-Labeled Poly(ethylene oxide) Bonded to Lysine Residues on the Enzyme Surface. Analytical Chemistry, 2003, 75, 910-917.	6.5	25
374	Template Synthesis of Poly(N-isopropylacrylamide) Minigels Using Interconnecting Macroporous Polystyrene. Langmuir, 2003, 19, 525-528.	3.5	21
375	Controlled Multistructural Color of a Gel Membrane. Langmuir, 2003, 19, 9554-9557.	3.5	43
376	BrÃ,nsted acid–base ionic liquids and their use as new materials for anhydrous proton conductors. Chemical Communications, 2003, , 938.	4.1	386
377	Simple and precision design of porous gel as a visible indicator for ionic species and concentration. Chemical Communications, 2003, , 2126.	4.1	118
378	Self-Sustaining Peristaltic Motion on the Surface of a Porous Gel. Journal of the American Chemical Society, 2003, 125, 13320-13321.	13.7	85

#	Article	IF	CITATIONS
379	Equilibrium potentials and charge transport of an l–/I3– redox couple in an ionic liquid. Chemical Communications, 2003, , 330-331.	4.1	176
380	A Novel BrÃ,nsted Acid–base System as Anhydrous Proton Conductors for Fuel Cell Electrolytes. Chemistry Letters, 2003, 32, 836-837.	1.3	53
381	Novel Thermosensitive Polyethers Prepared by Anionic Ring-Opening Polymerization of Glycidyl Ether Derivatives. Chemistry Letters, 2002, 31, 1128-1129.	1.3	53
382	Electron Transfer Reaction of Glucose Oxidase Hybrids Modified with PhenothiazineviaPoly(ethylene) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
383	Polymer Gels that Memorize Structures of Mesoscopically Sized Templates. Dynamic and Optical Nature of Periodic Ordered Mesoporous Chemical Gels. Langmuir, 2002, 18, 5977-5980.	3.5	117
384	Synthesis, Characterization, and Ion-Conductive Behavior in an Organic Solvent and in a Polyether of a Novel Lithium Salt of a Perfluorinated Polyimide Anion. Macromolecules, 2002, 35, 1403-1411.	4.8	42
385	Polymer electrolytes derived from dendritic polyether macromonomers. Solid State Ionics, 2002, 148, 399-404.	2.7	40
386	ã,¤̃,ªãƒ³æ€§æ¶²ä½"äjã®ã,¤ãƒ³è¼jé€ç¾è±j. Electrochemistry, 2002, 70, 140-144.	1.4	20
387	Fast electron transfer between glucose oxidase and electrodes via phenothiazine mediators with poly(ethylene oxide) spacers attached to the enzyme surface. Electrochemistry Communications, 2001, 3, 649-653.	4.7	21
388	Amperometric Biosensor for Polyphenol Based on Horseradish Peroxidase Immobilized on Gold Electrodes. Electroanalysis, 2001, 13, 408-412.	2.9	65
389	Anionic effect on ion transport properties in network polyether electrolytes. Electrochimica Acta, 2001, 46, 1487-1491.	5.2	80
390	Effects of addition of a boric acid ester monomer to electrolyte solutions and gel electrolytes on their ionic transport properties. Electrochimica Acta, 2001, 46, 1609-1614.	5.2	34
391	Pulsed-Gradient Spinâ^'Echo1H and19F NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids. Journal of Physical Chemistry B, 2001, 105, 4603-4610.	2.6	963
392	XPS study of lithium surface after contact with lithium-salt doped polymer electrolytes. Electrochimica Acta, 2001, 46, 1595-1603.	5.2	164
393	Polypyrrole/Polymer Electrolyte Composites Prepared by In Situ Electropolymerization of Pyrrole as Cathode/Electrolyte Material for Facile Electron Transfer at the Solid Interface. Journal of the Electrochemical Society, 2001, 148, D43.	2.9	25
394	Electrochemical Study on Swelling Change of Poly(<i>N</i> -isopropyl acrylamide) Gels in Response to Additives by Using Gel-modified Microdisk Electrodes and a Redox Probe. Electrochemistry, 2001, 69, 1002-1007.	1.4	2
395	Amperometric Detection of Polyphenols Using Peroxidase-Immobilized Gold Electrodes. Chemistry Letters, 2000, 29, 1020-1021.	1.3	3
396	Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochimica Acta, 2000, 45, 1265-1270.	5.2	420

#	Article	IF	CITATIONS
397	Electrochemical properties of polymer gel electrolytes based on poly(vinylidene fluoride) copolymer and homopolymer. Electrochimica Acta, 2000, 45, 1347-1360.	5.2	148
398	Single ion conduction in polyether electrolytes alloyed with lithium salt of a perfluorinated polyimide. Electrochimica Acta, 2000, 45, 1187-1192.	5.2	100
399	Effect of pH and the extent of micellization on the redox behavior of non-ionic surfactants containing an anthraquinone group. Journal of Electroanalytical Chemistry, 2000, 481, 192-199.	3.8	25
400	Study of the Correlation of the Cyclic Voltammetric Responses of a Nonionic Surfactant Containing an Anthraquinone Group with the Dissolved States. Langmuir, 2000, 16, 3509-3516.	3.5	21
401	Chemical and Electrochemical Characterization of Polymer Gel Electrolytes Based on a Poly(alkylene) Tj ETQq1 1 2000, 147, 2517.	0.784314 2.9	rgBT /Overlo 38
402	Preparation, Mechanical Properties, and Electrochemical Characterization of Polymer Gel Electrolytes Prepared from Poly(alkylene oxide) Macromonomers. Journal of the Electrochemical Society, 1999, 146, 1626-1632.	2.9	55
403	Surface activity and redox behavior of nonionic surfactants containing an anthraquinone group as the redox-active site. Colloid and Polymer Science, 1999, 277, 1125-1133.	2.1	17
404	High Ionic Conductivity of Polyether-Based Network Polymer Electrolytes with Hyperbranched Side Chains. Macromolecules, 1999, 32, 1541-1548.	4.8	224
405	Electron Transfer Reaction from Glucose Oxidase to an Electrode via Redox Copolymers. Polymer Journal, 1999, 31, 1149-1154.	2.7	12
406	Preparation of Polypyrrole/Polymer Electrolyte Composites with Concentration Gradient of Polypyrrole as Cathode/Electrolyte Material for Lithium Secondary Battery. Electrochemistry, 1999, 67, 1159-1161.	1.4	2
407	High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers. Electrochimica Acta, 1998, 43, 1177-1184.	5.2	187
408	Characterization of poly(vinylferrocene-co-2-hydroxyethyl methacrylate) for use as electron mediator in enzymatic glucose sensor. Reactive and Functional Polymers, 1998, 37, 263-269.	4.1	58
409	Molecular Specific Swelling Change of Hydrogels in Accordance with the Concentration of Guest Molecules. Journal of the American Chemical Society, 1998, 120, 5577-5578.	13.7	107
410	Network Polymer Electrolytes with Free Chain Ends as Internal Plasticizer. Journal of the Electrochemical Society, 1998, 145, 1521-1527.	2.9	84
411	Surface and Interface-New Functions of Biorelated Polymers I. Design of Enzymatic Glucose Sensor by Using Biocompatible Polymeric Mediator Kobunshi Ronbunshu, 1998, 55, 200-206.	0.2	2
412	Branched Effect in Ion-conducting Polymers. Kobunshi, 1998, 47, 829-829.	0.0	0
413	Photochromic, Electrochemical, and Photoelectrochemical Properties of Novel Azopyridinium Derivatives. Bulletin of the Chemical Society of Japan, 1997, 70, 737-744.	3.2	27
414	Molecular Relaxations of a Branched Poly(oxyethylene) Network Polymer. Polymer Journal, 1997, 29, 429-433.	2.7	3

#	Article	IF	CITATIONS
415	Cyclic voltammetric study of redox-active surfactant by hydrogel-modified electrode. Polymer Gels and Networks, 1997, 5, 369-383.	0.6	1
416	Effect of supporting electrolyte concentration on the electrochemical reaction of redox-active surfactant micelles in aqueous solutions. Journal of Electroanalytical Chemistry, 1997, 438, 153-158.	3.8	10
417	Electrochemical Studies of a Redox-Active Surfactant. Correlation between Electrochemical Responses and Dissolved States. Langmuir, 1996, 12, 487-493.	3.5	29
418	Molecular design of ion and ion/electron mixed conducting polymers. Macromolecular Symposia, 1996, 105, 229-233.	0.7	1
419	Conductivity study on ionic liquid/polymer complexes. Solid State Ionics, 1996, 86-88, 353-356.	2.7	42
420	Transport and electrochemical characterization of plasticized poly(vinyl chloride) solid electrolytes. Solid State Ionics, 1996, 86-88, 385-393.	2.7	87
421	Drug Releasing Mechanism from Redox Active Micelles. , 1996, , 371-372.		0
422	Supramolecules I. Interaction between Redox-Active Non-Ionic Surfactant Micelle and Poly(acrylic) Tj ETQq0 0 0 r	rgBT /Over	loçk 10 Tf 50
423	Ionic conductivity of polymer electrolytes containing room temperature molten salts based on pyridinium halide and aluminium chloride. Electrochimica Acta, 1995, 40, 2285-2288.	5.2	84
424	Structural effect of redox active sites on electron hopping rate in mixed conducting copolymers. Polymers for Advanced Technologies, 1995, 6, 190-196.	3.2	4
425	Effects of network structures and incorporated salt species on electrochemical properties of polyether-based polymer electrolytes. Solid State Ionics, 1995, 79, 306-312.	2.7	139
426	Electrochemical control of drug release from redox-active micelles. Journal of Controlled Release, 1995, 33, 79-87.	9.9	51
427	The Effect of Polymer Structures on the Ionic Association of LiClO4 in Polyetherâ€Based Network Polymer Electrolytes Studied by FTâ€Raman Scattering Spectroscopy. Journal of the Electrochemical Society, 1995, 142, L205-L207.	2.9	6
428	Redox Activity of Vinylferrocene Copolymers by Electron Hopping Reaction in the Absence of Fluid Solvents. The Journal of Physical Chemistry, 1995, 99, 12294-12300.	2.9	28
429	Super ion conducting polymers for solid polymer electrolytes. Synthetic Metals, 1995, 69, 521-524.	3.9	9
430	Electron transfer reaction between fixed redox sites in ion/electron mixed conducting polymers. Synthetic Metals, 1995, 69, 557-558.	3.9	5
431	Preparation of Novel Redox Copolymers : Poly [ferrocenylmethyl methacrylate-co-methoxy-oligo (ethylene oxide) methacrylate], and Their Use as Polymeric Mediators in Amperometric Glucose Sensors. Electrochemistry, 1995, 63, 1088-1094.	0.3	7

In-Situ Polycondensation for Synthesis of Composites of Elastomeric Polymers and Poly(\hat{l}^3 -methyl) Tj ETQq0 0 0 rgBT_/Overlock 10 Tf 50

#	Article	IF	CITATIONS
433	Electrochemical and Photochromic Properties of Azopyridinium Methylsulfates. Chemistry Letters, 1994, 23, 1785-1788.	1.3	7
434	Editorial—ion-conductive polymers. Polymers for Advanced Technologies, 1993, 4, 51-51.	3.2	0
435	Synthesis of polymer electrolytes based on poly[2-(2-methoxyethoxy)ethyl glycidyl ether] and their high ionic conductivity. Polymers for Advanced Technologies, 1993, 4, 85-91.	3.2	30
436	Ionic conductivity and side chain relaxation in polyglutamates having oligo(ethylene oxide) chains. Polymers for Advanced Technologies, 1993, 4, 179-187.	3.2	14
437	Gel-type solid polymer electrolytes for rechargeable film batteries. Polymers for Advanced Technologies, 1993, 4, 205-208.	3.2	11
438	In-situ direct polycondensation in polymer matrices. II. In-situ direct polycondensation in styrene–butadiene block copolymers. Journal of Polymer Science Part A, 1993, 31, 597-602.	2.3	12
439	High ionic conductivity of new polymer electrolytes consisting of polypyridinium, pyridinium and aluminium chloride. Journal of the Chemical Society Chemical Communications, 1993, , 929.	2.0	76
440	Electrochemical Study of Swelling Change of Poly(N-isopropyl acrylamide) Gels Using Gel-Modified Ultramicroelectrodes. Journal of Intelligent Material Systems and Structures, 1993, 4, 216-222.	2.5	4
441	Experimental aspects of solid-state voltammetry. Analytical Chemistry, 1992, 64, 1132-1140.	6.5	55
442	Effects of Composition and Sequence Distribution on Ionic Conductivity in Poly(ethylene) Tj ETQq0 0 0 rgBT /Ov Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1992, 1992, 74-82.	verlock 10 0.1	Tf 50 387 Tc 1
443	High Ionic Conductivity of Polymer Complexes Formed by Polypyridinium, Pyridinium, and Aluminium Chloride. Materials Research Society Symposia Proceedings, 1992, 293, 135.	0.1	2
444	In situ polycondensation for synthesis of composites of elastomeric matrixes and wholly aromatic polyamides. Chemistry of Materials, 1992, 4, 1123-1128.	6.7	13
445	Ionic motions in network polymers containing lithium perchlorate. Polymer, 1992, 33, 4699-4704.	3.8	21
446	Ion/electron mixed conductors based on polymer electrolytes. Electrochimica Acta, 1992, 37, 1521-1523.	5.2	14
447	A new polymer electrolyte based on polyglycidylether. Electrochimica Acta, 1992, 37, 1725-1727.	5.2	46
448	Synthesis of Ultra-thin Films of Poly(vinylenebenzothiazole) at Air/Water Interface. Chemistry Letters, 1990, 19, 779-782.	1.3	4
449	Voltammetric measurement of ultraslow diffusion rates in polymeric media with microdisk electrodes. Analytical Chemistry, 1990, 62, 747-752.	6.5	56
450	Synthesis of ultra-thin films of aromatic polymers at air/water interface. Journal of Polymer Science Part A, 1990, 28, 3221-3230.	2.3	6

#	Article	IF	CITATIONS
451	Solid-state voltammetry and self-diffusion dynamics of a linear monotagged redox polymer: .omegaferrocenecarboxamidoalphamethoxypoly(ethylene oxide). Journal of the American Chemical Society, 1990, 112, 3730-3736.	13.7	33
452	The Electrochemistry Group Medal Lecture. Electron self-exchange dynamics between redox sites in polymers. Faraday Discussions of the Chemical Society, 1989, 88, 1.	2.2	67
453	Synthesis of Semi-Rigid Polyesteramides Having Piperazine Ring as a Mesogenic Unit. Polymer Journal, 1989, 21, 951-954.	2.7	0
454	New Lithium Salt Ionic Conductor Using Poly(vinyl alcohol) Matrix. Chemistry Letters, 1989, 18, 1913-1916.	1.3	9
455	Ionic conductivity of polymer electrolytes and future applications. British Polymer Journal, 1988, 20, 181-192.	0.7	128
456	A polymer complex as a new type of electron beam resist for dry development. Polymer Engineering and Science, 1988, 28, 912-915.	3.1	0
457	Langmuir-Blodgett films of acetalized poly(vinyl alcohol)s. Thin Solid Films, 1988, 161, 305-313.	1.8	25
458	Regulation of supermolecular structure of amphiphilic polymers by means of the Langmuir-Blodgett technique. Macromolecules, 1988, 21, 2997-3003.	4.8	36
459	Direct Copolycondensation for the Synthesis of Copolyamides or Copolyesters. Polymer Journal, 1988, 20, 529-537.	2.7	8
460	Polypyrrole/Polymer Electrolyte Bilayer Composites Prepared by Electrochemical Polymerization of Pyrrole Using Ion-Conducting Polymers as a Solid Electrolyte. Chemistry Letters, 1987, 16, 1239-1242.	1.3	8
461	Stepwise deposition of oriented monolayer-polymer films by the Langmuir-Blodgett technique. Macromolecules, 1987, 20, 452-454.	4.8	18
462	Protonic conduction in poly(ethylenimine) hydrates. Macromolecules, 1987, 20, 968-973.	4.8	18
463	Direct Polycondensation Reaction Using Polymeric Triphenylphosphine as an Initiator. Polymer Journal, 1987, 19, 1351-1357.	2.7	2
464	Carrier transport and generation processes in polymer electrolytes based on poly(ethylene oxide) networks. Macromolecules, 1987, 20, 569-573.	4.8	89
465	Preparation and polarizing microscopic study of poly(alkyl acrylate-g-polybenzamide)s. Journal of Polymer Science Part A, 1987, 25, 727-730.	2.3	7
466	Structure-conductivity relationsihp in polymer electrolytes formed by network polymers from poly[dimethylsiloxane-g- poly(ethylene oxide)] and litegum perchlorate. Journal of Power Sources, 1987, 20, 327-332.	7.8	69
467	Ionic Conductivity of Network Polymers from Poly(ethylene oxide) Containing Lithium Perchlorate. Polymer Journal, 1986, 18, 809-817.	2.7	89
468	Investigation of ion transport in network polymers from poly(propylene oxide) using azobenzene probes. Macromolecules, 1986, 19, 1921-1925.	4.8	15

#	Article	IF	CITATIONS
469	Effects of polymer structure and incorporated salt species on ionic conductivity of polymer complexes formed by aliphatic polyester and alkali metal thiocyanate. Macromolecules, 1986, 19, 188-192.	4.8	48
470	Correlation between ionic conductivity and the dynamic mechanical property of polymer complexes formed by a segmented polyether poly(urethane urea) and lithium perchlorate. Macromolecules, 1986, 19, 815-819.	4.8	47
471	Correlation between ionic conductivity and segmental motion of polymer complexes consisting of crosslinked poly(propylene oxide) and lithium perchlorate Nippon Kagaku Kaishi / Chemical Society of Japan - Chemistry and Industrial Chemistry Journal, 1986, 1986, 428-434.	0.1	4
472	Syntheses of polyurea by direct polycondensation of diamines with alkali metal carbonates. Journal of Polymer Science, Part C: Polymer Letters, 1986, 24, 65-67.	0.7	7
473	Synthesis of polyurea by direct polycondensation of 4-aminophenyl ether with lithium carbonate. Journal of Polymer Science Part A, 1986, 24, 1915-1921.	2.3	6
474	Effect of polycondensation methods on molecular weight distribution of nylon 610. Journal of Polymer Science: Polymer Chemistry Edition, 1985, 23, 3081-3093.	0.8	7
475	Ionic Conductivity and Mobility of Poly(propylene oxide) Networks Dissolving Alkali Metal Thiocyanates. Polymer Journal, 1985, 17, 549-555.	2.7	42
476	Morphology and ionic conductivity of polymer complexes formed by segmented polyether poly(urethane urea) and lithium perchlorate. Macromolecules, 1985, 18, 1945-1950.	4.8	93
477	Ionic conductivity and mobility in network polymers from poly(propylene oxide) containing lithium perchlorate. Journal of Applied Physics, 1985, 57, 123-128.	2.5	271
478	Evaluation of ionic mobility and transference number in a polymeric solid electrolyte by isothermal transient ionic current method. Journal of Applied Physics, 1985, 58, 736-740.	2.5	79
479	High ionic conductivity in poly(dimethyl siloxane-co-ethylene oxide) dissolving lithium perchlorate. Journal of Polymer Science, Polymer Letters Edition, 1984, 22, 659-663.	0.4	140
480	Syntheses and electrical conductivity of polyamides containing tetrathiafulvalene moieties in the main chain. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 1299-1307.	0.8	4
481	Ionic conductivity of polymer complexes formed by poly(ethylene succinate) and lithium perchlorate. Macromolecules, 1984, 17, 2902-2908.	4.8	94
482	Ionic conductivity of polymer complexes formed by poly(β-propiolactone) and lithium perchlorate. Macromolecules, 1984, 17, 2908-2912.	4.8	82
483	Temperature Dependence of Ionic Conductivity of Crosslinked Poly(propylene oxide) Films Dissolving Lithium Salts and Their Interfacial Charge Transfer Resistance in Contact with Lithium Electrodes. Polymer Journal, 1984, 16, 711-716.	2.7	48
484	Anisotropic electrical conductivity of drawn elastomeric ionene–TCNQ salts. Journal of Polymer Science: Polymer Chemistry Edition, 1983, 21, 2397-2404.	0.8	4
485	Thermoswitching property in TCNQ salts of ionenes containing poly(ethylene oxide) segments. Journal of Polymer Science: Polymer Chemistry Edition, 1983, 21, 3145-3153.	0.8	6
486	Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4. Journal of Polymer Science, Polymer Physics Edition, 1983, 21, 939-948.	1.0	134

#	Article	IF	CITATIONS
487	Effect of poly(propylene oxide) segment size on structure-property relationships in elastomeric ionene. Polymer, 1983, 24, 491-497.	3.8	7

488 Effect of Molecular Weight of Polymeric Solvent on Ion Conductive Behavior in Poly(propylene) Tj ETQq0 0 0 rgBT / Overlock 10 Tf 50 70

489	Polymer Journal, 1983, 15, 175-177.	2.7	44
490	Ionic Conductivity of Polymeric Solid Electrolytes Based on Poly(propylene oxide) or Poly(tetramethylene oxide). Polymer Journal, 1982, 14, 877-886.	2.7	40
491	Preparation of Elastomeric Ionene Polymers Containing 4,4′-Bipyridinium or 1,2-Bis(4-pyridinium)ethylene Ring and the Conductivity of Their TCNQ Salts. Polymer Journal, 1982, 14, 189-195.	2.7	20
492	Electrical conductivity of the poly (N-hexamethylene triethylenediammonium dibromide)-CuBr solid electrolyte. Electrochimica Acta, 1982, 27, 1153-1155.	5.2	2
493	Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application. Journal of Applied Polymer Science, 1982, 27, 4191-4198.	2.6	53
494	Microstructure and electric properties of elastomeric ionene-TCNQ salts. Journal of Polymer Science: Polymer Chemistry Edition, 1982, 20, 2669-2680.	0.8	16
495	Preparation of polycations by polymerizing biscations and the conductivity of their TCNQ salts. Die Makromolekulare Chemie, 1981, 182, 2659-2669.	1.1	5
496	High lithium ionic conductivity of polymeric solid electrolytes. Die Makromolekulare Chemie Rapid Communications, 1981, 2, 741-744.	1.1	117
497	Electrically conductive TCNQ salt of elastometric polycation. Journal of Polymer Science, Polymer Letters Edition, 1981, 19, 331-334.	0.4	6
498	Electrochemical Pretreatment of Solid–Electrolyte Interphase Formation for Enhanced Li ₄ Ti ₅ O ₁₂ Anode Performance in a Molten Li–Ca Binary Salt Hydrate Electrolyte. ChemElectroChem, 0, , .	3.4	0
499	LiNi _{0.5} Mn _{1.5} O ₄ -Hybridized Gel Polymer Cathode and Gel Polymer Electrolyte Containing a Sulfolane-Based Highly Concentrated Electrolyte for the Fabrication of a 5 V Class of Flexible Lithium Batteries. ACS Omega, 0, , .	3.5	3