
Cécile Agosta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9139851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Communications Earth & Environment, 2022, 3, .	6.8	46
2	Clouds drive differences in future surface melt over the Antarctic ice shelves. Cryosphere, 2022, 16, 2655-2669.	3.9	8
3	Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic Ice Sheet. Cryosphere, 2021, 15, 571-593.	3.9	22
4	Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere, 2021, 15, 1215-1236.	3.9	71
5	Antarctic Atmospheric River Climatology and Precipitation Impacts. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033788.	3.3	60
6	Projected land ice contributions to twenty-first-century sea level rise. Nature, 2021, 593, 74-82.	27.8	200
7	Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica. Geoscientific Model Development, 2021, 14, 3487-3510.	3.6	35
8	Significant additional Antarctic warming in atmospheric bias-corrected ARPEGE projections with respect to control run. Cryosphere, 2021, 15, 3615-3635.	3.9	2
9	What is the surface mass balance of Antarctica? An intercomparison of regional climate model estimates. Cryosphere, 2021, 15, 3751-3784.	3.9	55
10	Future Sea Level Change Under Coupled Model Intercomparison Project Phase 5 and Phase 6 Scenarios From the Greenland and Antarctic Ice Sheets. Geophysical Research Letters, 2021, 48, e2020GL091741.	4.0	28
11	Acceleration of Dynamic Ice Loss in Antarctica From Satellite Gravimetry. Frontiers in Earth Science, 2021, 9, .	1.8	10
12	Snowfall and Water Stable Isotope Variability in East Antarctica Controlled by Warm Synoptic Events. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032863.	3.3	15
13	CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica. Cryosphere, 2020, 14, 855-879.	3.9	58
14	Interannual variability of summer surface mass balance and surface melting in the Amundsen sector, West Antarctica. Cryosphere, 2020, 14, 229-249.	3.9	25
15	Detecting a forced signal in satellite-era sea-level change. Environmental Research Letters, 2020, 15, 094079.	5.2	11
16	Experimental protocol for sea level projections from ISMIP6 stand-alone ice sheet models. Cryosphere, 2020, 14, 2331-2368.	3.9	72
17	ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere, 2020, 14, 3033-3070.	3.9	198
18	The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. Cryosphere, 2020, 14, 3071-3096.	3.9	144

CéCILE AGOSTA

#	Article	IF	CITATIONS
19	Regional modeling of surface mass balance on the Cook Ice Cap, Kerguelen Islands (\$\$49^{circ) Tj ETQq1 1 0.784	1314 rgBT	/gverlock 1
20	West Antarctic surface melt triggered by atmospheric rivers. Nature Geoscience, 2019, 12, 911-916.	12.9	112
21	The Effect of Foehnâ€Induced Surface Melt on Firn Evolution Over the Northeast Antarctic Peninsula. Geophysical Research Letters, 2019, 46, 3822-3831.	4.0	55
22	Coastal water vapor isotopic composition driven by katabatic wind variability in summer at Dumont d'Urville, coastal East Antarctica. Earth and Planetary Science Letters, 2019, 514, 37-47.	4.4	14
23	Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere, 2019, 13, 281-296.	3.9	171
24	Effect of prescribed sea surface conditions on the modern and future Antarctic surface climate simulated by the ARPEGE atmosphere general circulation model. Cryosphere, 2019, 13, 3023-3043.	3.9	4
25	Sensitivity of the current Antarctic surface mass balance to sea surface conditions using MAR. Cryosphere, 2018, 12, 3827-3839.	3.9	33
26	Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet. Cryosphere, 2018, 12, 3409-3418.	3.9	45
27	Melting over the northeast Antarctic Peninsula (1999–2009): evaluation of a high-resolution regional climate model. Cryosphere, 2018, 12, 2901-2922.	3.9	19
28	Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 2018, 558, 219-222.	27.8	759
29	Estimation des températures au début du dernier millénaire dans l'ouest du GroenlandÂ: résultats préliminaires issus de l'application d'un modÃïle glaciologique de type degréâ€'jour sur le glacier du Lyngmarksbr?. Geomorphologie Relief, Processus, Environnement, 2018, 24, .	0.4	4
30	Antarctica-Regional Climate and Surface Mass Budget. Current Climate Change Reports, 2017, 3, 303-315.	8.6	29
31	Evaluating Model Simulations of Twentieth-Century Sea-Level Rise. Part II: Regional Sea-Level Changes. Journal of Climate, 2017, 30, 8565-8593.	3.2	57
32	Evaluating Model Simulations of Twentieth-Century Sea Level Rise. Part I: Global Mean Sea Level Change. Journal of Climate, 2017, 30, 8539-8563.	3.2	64
33	Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere, 2017, 11, 1015-1033.	3.9	310
34	Anthropogenic forcing dominates global mean sea-level rise since 1970. Nature Climate Change, 2016, 6, 701-705.	18.8	105
35	Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate. Cryosphere, 2015, 9, 1579-1600.	3.9	125
36	Comparison between observed and simulated aeolian snow mass fluxes in Adélie Land, East Antarctica. Cryosphere, 2015, 9, 1373-1383.	3.9	43

CéCILE AGOSTA

#	Article	IF	CITATIONS
37	Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance. Cryosphere, 2015, 9, 2311-2321.	3.9	55
38	Oceanic Forcing of Antarctic Climate Change: A Study Using a Stretched-Grid Atmospheric General Circulation Model. Journal of Climate, 2014, 27, 5786-5800.	3.2	37
39	A novel experimental study of aeolian snow transport in Adelie Land (Antarctica). Cold Regions Science and Technology, 2014, 108, 125-138.	3.5	24
40	Transport of Snow by the Wind: A Comparison Between Observations in Adélie Land, Antarctica, and Simulations Made with the Regional Climate Model MAR. Boundary-Layer Meteorology, 2013, 146, 133-147.	2.3	66
41	High-resolution modelling of the Antarctic surface mass balance, application for the twentieth, twenty first and twenty second centuries. Climate Dynamics, 2013, 41, 3247-3260.	3.8	37
42	An updated and quality controlled surface mass balance dataset for Antarctica. Cryosphere, 2013, 7, 583-597.	3.9	71
43	Impact of model resolution on simulated wind, drifting snow and surface mass balance in Terre Adélie, East Antarctica. Journal of Glaciology, 2012, 58, 821-829.	2.2	32
44	A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation. Climate Dynamics, 2012, 38, 75-86.	3.8	49
45	Modeling the mass and surface heat budgets in a coastal blue ice area of Adelie Land, Antarctica. Journal of Geophysical Research, 2011, 116, .	3.3	38
46	A Downscaling Approach Toward High-Resolution Surface Mass Balance Over Antarctica. Surveys in Geophysics, 2011, 32, 507-518.	4.6	9