
Lee T Hickey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/913973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beyond the gene: epigenetic and cis-regulatory targets offer new breeding potential for the future. Current Opinion in Biotechnology, 2022, 73, 88-94.	6.6	13
2	A toolkit to rapidly modify root systems through single plant selection. Plant Methods, 2022, 18, 2.	4.3	8
3	Mining the Vavilov wheat diversity panel for new sources of adult plant resistance to stripe rust. Theoretical and Applied Genetics, 2022, 135, 1355-1373.	3.6	6
4	Harnessing genetic variation at regulatory regions to fine-tune traits for climate-resilient crops. Molecular Plant, 2022, 15, 222-224.	8.3	2
5	Accelerating Breeding Cycles. , 2022, , 557-571.		5
6	Speed vernalization to accelerate generation advance in winter cereal crops. Molecular Plant, 2022, 15, 1300-1309.	8.3	25
7	Haplotype variants of Sr46 in Aegilops tauschii, the diploid D genome progenitor of wheat. Theoretical and Applied Genetics, 2022, 135, 2627-2639.	3.6	2
8	Designing chickpea for a hotter drier world. Euphytica, 2022, 218, .	1.2	3
9	Tunable crops are just a spray away. Nature Plants, 2021, 7, 102-103.	9.3	4
10	Need for speed: manipulating plant growth to accelerate breeding cycles. Current Opinion in Plant Biology, 2021, 60, 101986.	7.1	41
11	Wheat root systems as a breeding target for climate resilience. Theoretical and Applied Genetics, 2021, 134, 1645-1662.	3.6	74
12	Genetic characterization of adult-plant resistance to tan spot (syn, yellow spot) in wheat. Theoretical and Applied Genetics, 2021, 134, 2823-2839.	3.6	8
13	QTL identified for stay-green in a multi-reference nested association mapping population of wheat exhibit context dependent expression and parent-specific alleles. Field Crops Research, 2021, 270, 108181.	5.1	16
14	Rapid delivery systems for future food security. Nature Biotechnology, 2021, 39, 1179-1181.	17.5	17
15	Fast-forward breeding for a food-secure world. Trends in Genetics, 2021, 37, 1124-1136.	6.7	82
16	Hotter, drier, CRISPR: the latest edit on climate change. Theoretical and Applied Genetics, 2021, 134, 1691-1709.	3.6	40
17	A linkage disequilibrium-based approach to position unmapped SNPs in crop species. BMC Genomics, 2021, 22, 773.	2.8	7
18	A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature, 2021, 599, 622-627.	27.8	106

#	Article	IF	CITATIONS
19	Dissecting the Genetics of Early Vigour to Design Drought-Adapted Wheat. Frontiers in Plant Science, 2021, 12, 754439.	3.6	9
20	How Do Crops Balance Water Supply and Demand when Water Is Limiting?. Proceedings (mdpi), 2020, 36,	0.2	0
21	Combining Trait Physiology, Crop Modelling and Molecular Genetics to Improve Wheat Adaptation to Terminal Water-Stress Targeting Stay-Green and Root Traits. Proceedings (mdpi), 2020, 36, .	0.2	0
22	Physiological Changes in Barley mlo-11 Powdery Mildew Resistance Conditioned by Tandem Repeat Copy Number. International Journal of Molecular Sciences, 2020, 21, 8769.	4.1	5
23	Is plant variety registration keeping pace with speed breeding techniques?. Euphytica, 2020, 216, 1.	1.2	12
24	Adaptive Traits to Improve Durum Wheat Yield in Drought and Crown Rot Environments. International Journal of Molecular Sciences, 2020, 21, 5260.	4.1	23
25	Overcoming polyploidy pitfalls: a user guide for effective SNP conversion into KASP markers in wheat. Theoretical and Applied Genetics, 2020, 133, 2413-2430.	3.6	42
26	Response of Barley Genotypes to Weed Interference in Australia. Agronomy, 2020, 10, 99.	3.0	11
27	A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. ELife, 2020, 9, .	6.0	78
28	Multivariate Genomic Selection and Potential of Rapid Indirect Selection with Speed Breeding in Spring Wheat. Crop Science, 2019, 59, 1945-1959.	1.8	51
29	High-resolution mapping of rachis nodes per rachis, a critical determinant of grain yield components in wheat. Theoretical and Applied Genetics, 2019, 132, 2707-2719.	3.6	40
30	"SpeedGS―to Accelerate Genetic Gain in Spring Wheat. , 2019, , 303-327.		35
31	Breeding crops to feed 10 billion. Nature Biotechnology, 2019, 37, 744-754.	17.5	577
32	Genetic Characterization of Resistance to Pyrenophora teres f. teres in the International Barley Differential Canadian Lake Shore. Frontiers in Plant Science, 2019, 10, 326.	3.6	7
33	Insights into deployment of DNA markers in plant variety protection and registration. Theoretical and Applied Genetics, 2019, 132, 1911-1929.	3.6	56
34	Technological perspectives for plant breeding. Theoretical and Applied Genetics, 2019, 132, 555-557.	3.6	27
35	A Major Root Architecture QTL Responding to Water Limitation in Durum Wheat. Frontiers in Plant Science, 2019, 10, 436.	3.6	84
36	Q&A: modern crop breeding for future food security. BMC Biology, 2019, 17, 18.	3.8	88

#	Article	IF	CITATIONS
37	Can a speed breeding approach accelerate genetic gain in pigeonpea?. Euphytica, 2019, 215, 1.	1.2	35
38	Integrating Crop Modelling, Physiology, Genetics and Breeding to Aid Crop Improvement for Changing Environments in the Australian Wheatbelt. Proceedings (mdpi), 2019, 36, 4.	0.2	0
39	Speed breeding orphan crops. Theoretical and Applied Genetics, 2019, 132, 607-616.	3.6	98
40	Discovering new alleles for yellow spot resistance in the Vavilov wheat collection. Theoretical and Applied Genetics, 2019, 132, 149-162.	3.6	21
41	Allelic effects and variations for key bread-making quality genes in bread wheat using high-throughput molecular markers. Journal of Cereal Science, 2019, 85, 305-309.	3.7	26
42	Fast-Forwarding Genetic Gain. Trends in Plant Science, 2018, 23, 184-186.	8.8	164
43	Novel sources of resistance to Septoria nodorum blotch in the Vavilov wheat collection identified by genome-wide association studies. Theoretical and Applied Genetics, 2018, 131, 1223-1238.	3.6	53
44	Vavilov wheat accessions provide useful sources of resistance to tan spot (syn. yellow spot) of wheat. Plant Pathology, 2018, 67, 1076-1087.	2.4	15
45	Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 2018, 4, 23-29.	9.3	770
46	VERNALIZATION1 Modulates Root System Architecture in Wheat and Barley. Molecular Plant, 2018, 11, 226-229.	8.3	118
47	Unlocking new alleles for leaf rust resistance in the Vavilov wheat collection. Theoretical and Applied Genetics, 2018, 131, 127-144.	3.6	97
48	Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nature Protocols, 2018, 13, 2944-2963.	12.0	286
49	Root System Architecture and Its Association with Yield under Different Water Regimes in Durum Wheat. Crop Science, 2018, 58, 2331-2346.	1.8	70
50	Genetic insights into underground responses to Fusarium graminearum infection in wheat. Scientific Reports, 2018, 8, 13153.	3.3	18
51	Crown rot of wheat in Australia: Fusarium pseudograminearum taxonomy, population biology and disease management. Australasian Plant Pathology, 2018, 47, 285-299.	1.0	50
52	Selection in Early Generations to Shift Allele Frequency for Seminal Root Angle in Wheat. Plant Genome, 2018, 11, 170071.	2.8	23
53	Speed breeding for multiple quantitative traits in durum wheat. Plant Methods, 2018, 14, 36.	4.3	83
54	Root architectural traits and yield: exploring the relationship in barley breeding trials. Euphytica, 2018, 214, 1.	1.2	46

#	Article	IF	CITATIONS
55	Designer Roots for Future Crops. Trends in Plant Science, 2018, 23, 957-960.	8.8	45
56	Trends in exploring wheat and barley germplasm for novel disease resistance traits. Burleigh Dodds Series in Agricultural Science, 2018, , 261-270.	0.2	0
57	Into the vault of the Vavilov wheats: old diversity for new alleles. Genetic Resources and Crop Evolution, 2017, 64, 531-544.	1.6	41
58	Characterization of <i>Rph24</i> : A Gene Conferring Adult Plant Resistance to <i>Puccinia hordei</i> in Barley. Phytopathology, 2017, 107, 834-841.	2.2	45
59	Speed breeding for multiple disease resistance in barley. Euphytica, 2017, 213, 1.	1.2	107
60	Pathogenic variation of Pyrenophora teres f. teres in Australia. Australasian Plant Pathology, 2017, 46, 115-128.	1.0	20
61	Investigating successive Australian barley breeding populations for stable resistance to leaf rust. Theoretical and Applied Genetics, 2017, 130, 2463-2477.	3.6	7
62	Rapid Phenotyping Adult Plant Resistance to Stem Rust in Wheat Grown under Controlled Conditions. Methods in Molecular Biology, 2017, 1659, 183-196.	0.9	12
63	Mining Vavilov's Treasure Chest of Wheat Diversity for Adult Plant Resistance to <i>Puccinia triticina</i> . Plant Disease, 2017, 101, 317-323.	1.4	28
64	Genome-Wide Association Study for Pre-harvest Sprouting Resistance in a Large Germplasm Collection of Chinese Wheat Landraces. Frontiers in Plant Science, 2017, 08, 401.	3.6	98
65	Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops. Frontiers in Plant Science, 2017, 8, 1534.	3.6	86
66	Toward More Effective Discovery and Deployment of Novel Plant Genetic Variation: Reflection and Future Directions. , 2016, , 139-150.		8
67	Genomic Regions Influencing Seminal Root Traits in Barley. Plant Genome, 2016, 9, plantgenome2015.03.0012.	2.8	33
68	Resistance to yellow spot in wheat grown under accelerated growth conditions. Euphytica, 2016, 209, 693-707.	1.2	43
69	A rapid phenotyping method for adult plant resistance to leaf rust in wheat. Plant Methods, 2016, 12, 17.	4.3	86
70	Discovery of QTL for stay-green and heat-stress in barley (Hordeum vulgare) grown under simulated abiotic stress conditions. Euphytica, 2016, 207, 305-317.	1.2	36
71	Integrating Rapid Phenotyping and Speed Breeding to Improve Stay-Green and Root Adaptation of Wheat in Changing, Water-Limited, Australian Environments Procedia Environmental Sciences, 2015, 29, 175-176.	1.4	27
72	High-throughput Phenotyping of Wheat Seminal Root Traits in a Breeding Context. Procedia Environmental Sciences, 2015, 29, 102-103.	1.4	7

#	Article	IF	CITATIONS
73	Spot form of net blotch resistance in barley is under complex genetic control. Theoretical and Applied Genetics, 2015, 128, 489-499.	3.6	24
74	High-throughput phenotyping of seminal root traits in wheat. Plant Methods, 2015, 11, 13.	4.3	150
75	Structural Changes of Starch Molecules in Barley Grains During Germination. Cereal Chemistry, 2014, 91, 431-437.	2.2	27
76	Association mapping of resistance to Puccinia hordei in Australian barley breeding germplasm. Theoretical and Applied Genetics, 2014, 127, 1199-1212.	3.6	37
77	Mapping Quantitative Trait Loci for Partial Resistance to Powdery Mildew in an Australian Barley Population. Crop Science, 2012, 52, 1021-1032.	1.8	21
78	Grain dormancy QTL identified in a doubled haploid barley population derived from two non-dormant parents. Euphytica, 2012, 188, 113-122.	1.2	20
79	Origin of leaf rust adult plant resistance gene <i>Rph20</i> in barley. Genome, 2012, 55, 396-399.	2.0	18
80	Rapid phenotyping for adultâ€plant resistance to stripe rust in wheat. Plant Breeding, 2012, 131, 54-61.	1.9	63
81	Mapping Rph20: a gene conferring adult plant resistance to Puccinia hordei in barley. Theoretical and Applied Genetics, 2011, 123, 55-68.	3.6	89
82	Screening for grain dormancy in segregating generations of dormantÂ×Ânon-dormant crosses in white-grained wheat (Triticum aestivum L.). Euphytica, 2010, 172, 183-195.	1.2	22
83	Grain dormancy in fixed lines of white-grained wheat (Triticum aestivum L.) grown under controlled environmental conditions. Euphytica, 2009, 168, 303-310.	1.2	40