List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9139667/publications.pdf Version: 2024-02-01

K V MIKKELSEN

#	Article	IF	CITATIONS
1	Quantum computing for chemical and biomolecular product design. Current Opinion in Chemical Engineering, 2022, 36, 100754.	3.8	26
2	Synthesis, characterization and computational evaluation of bicyclooctadienes towards molecular solar thermal energy storage. Chemical Science, 2022, 13, 834-841.	3.7	14
3	Subphthalocyanine–triangulene dyads: Property tuning for lightâ€harvesting device applications. Energy Science and Engineering, 2022, 10, 1752-1762.	1.9	3
4	A benchmark study of aromaticity indexes for benzene, pyridine and the diazines – I. Ground state aromaticity. RSC Advances, 2022, 12, 2830-2842.	1.7	19
5	Optimization of the thermochemical properties of the norbornadiene/quadricyclane photochromic couple for solar energy storage using nanoparticles. Physical Chemistry Chemical Physics, 2022, 24, 5506-5521.	1.3	5
6	The effects of solvation on the back reaction and storage capabilities of solar thermal energy storage systems. Physical Chemistry Chemical Physics, 2022, 24, 5564-5577.	1.3	6
7	Density Functional Theory Study of Carbamoyl-Substituted Dihydroazulene/Vinylheptafulvene Derivatives and Solvent Effects. Journal of Physical Chemistry C, 2022, 126, 4815-4825.	1.5	1
8	A Neural Network Approach for Property Determination of Molecular Solar Cell Candidates. Journal of Physical Chemistry A, 2022, 126, 1681-1688.	1.1	4
9	Perturbation of the UV transitions of formaldehyde by TiO2 photocatalysts and Aun nanoclusters. Physical Chemistry Chemical Physics, 2022, , .	1.3	0
10	Prospects of Improving Molecular Solar Energy Storage of the Norbornadiene/Quadricyclane System through Bridgehead Modifications. Journal of Physical Chemistry A, 2022, 126, 2670-2676.	1.1	13
11	Electric Properties of Photochromic Molecules Physisorbed on Silver and Copper Nanoparticles. Journal of Physical Chemistry A, 2022, 126, 3145-3156.	1.1	1
12	Bypassing the multireference character of singlet molecular oxygen, part 1:1,4 ycloâ€addition. International Journal of Quantum Chemistry, 2021, 121, e26523.	1.0	2
13	Simulating fullerene polyhedral formation from planar precursors. Physical Chemistry Chemical Physics, 2021, 23, 6561-6573.	1.3	0
14	A QM/MM study of the conformation stability and electronic structure of the photochromic switches derivatives of DHA/VHF in acetonitrile solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 251, 119434.	2.0	10
15	Fulvaleneâ€Based Polycyclic Aromatic Hydrocarbon Ladderâ€Type Structures: Synthesis and Properties. Chemistry - A European Journal, 2021, 27, 8315-8324.	1.7	13
16	Dihydroazuleneâ€Azobenzeneâ€Đihydroazulene Triad Photoswitches. Chemistry - A European Journal, 2021, 27, 12437-12446.	1.7	8
17	Benchmark study on the optical and thermochemical properties of the norbornadiene-quadricyclane photoswitch. Chemical Physics Letters, 2021, 779, 138665.	1.2	8
18	Promoting the thermal back reaction of vinylheptafulvene to dihydroazulene by physisorbtion on nanoparticles. Physical Chemistry Chemical Physics, 2021, 23, 12889-12899.	1.3	4

#	Article	IF	CITATIONS
19	Dynamics of nuclear recoil: QM-BOMD simulations of model systems following β-decay. Physical Chemistry Chemical Physics, 2021, 23, 25689-25698.	1.3	3
20	Virtual screening of norbornadiene-based molecular solar thermal energy storage systems using a genetic algorithm. Journal of Chemical Physics, 2021, 155, 184105.	1.2	7
21	Investigation of the Structural and Thermochemical Properties of [2.2.2]-Bicyclooctadiene Photoswitches. Journal of Physical Chemistry A, 2021, 125, 10330-10339.	1.1	8
22	User-friendly interface for fast and easy construction of Dalton input files. Journal of Molecular Modeling, 2020, 26, 274.	0.8	0
23	Tuning the dihydroazulene – vinylheptafulvene couple for storage of solar energy. Russian Chemical Reviews, 2020, 89, 573-586.	2.5	43
24	Hydration of Atmospheric Molecular Clusters III: Procedure for Efficient Free Energy Surface Exploration of Large Hydrated Clusters. Journal of Physical Chemistry A, 2020, 124, 5253-5261.	1.1	16
25	Interfacial tension in water/n-decane/naphthenic acid systems predicted by a combined COSMO-RS theory and pendant drop experimental study. Molecular Physics, 2020, 118, e1764645.	0.8	3
26	Dalton Project: A Python platform for molecular- and electronic-structure simulations of complex systems. Journal of Chemical Physics, 2020, 152, 214115.	1.2	45
27	Photo- and Collision-Induced Isomerization of a Charge-Tagged Norbornadiene–Quadricyclane System. Journal of Physical Chemistry Letters, 2020, 11, 6045-6050.	2.1	15
28	The unexpected effect of aqueous ion pairs on the forbidden n → π* transition in nitrate. Physical Chemistry Chemical Physics, 2020, 22, 11678-11685.	1.3	2
29	The influence of gold nanoparticles on the two photon absorption of photochromic molecular systems. Physical Chemistry Chemical Physics, 2019, 21, 18577-18588.	1.3	5
30	Synthesis of radiaannulene oligomers to model the elusive carbon allotrope 6,6,12-graphyne. Nature Communications, 2019, 10, 3714.	5.8	33
31	Norbornadiene–dihydroazulene conjugates. Organic and Biomolecular Chemistry, 2019, 17, 7735-7746.	1.5	25
32	Benchmarking sampling methodology for calculations of Rayleigh light scattering properties of atmospheric molecular clusters. Physical Chemistry Chemical Physics, 2019, 21, 17274-17287.	1.3	4
33	Computational construction of the electronic Hamiltonian for photoinduced electron transfer and Redfield propagation. Physical Chemistry Chemical Physics, 2019, 21, 17366-17377.	1.3	3
34	Theoretical Investigation on the Control of Macrocyclic Dihydroazulene/Azobenzene Photoswitches. Journal of Physical Chemistry C, 2019, 123, 25579-25584.	1.5	7
35	Molecular solar thermal energy storage properties of photochromic molecules physisorbed onto nanoparticles. Chemical Physics Letters, 2019, 733, 136661.	1.2	7
36	The riddle of the forbidden UV absorption of aqueous nitrate: the oscillator strength of the n → π* transition in NO ₃ ^{â^'} including second order vibronic coupling. Physical Chemistry Chemical Physics, 2019, 21, 23466-23472.	1.3	2

#	Article	IF	CITATIONS
37	Mechanism of Photoinduced Dihydroazulene Ring-Opening Reaction. Journal of Physical Chemistry Letters, 2019, 10, 3944-3949.	2.1	19
38	Excited‣tate Topology Modifications of the Dihydroazulene Photoswitch Through Aromaticity. ChemPhotoChem, 2019, 3, 619-629.	1.5	10
39	Electronic Predissociation in the Dichloromethane Cation CH ₂ Cl ₂ ⁺ Electronic State ² A ₁ . Journal of Physical Chemistry A, 2019, 123, 4048-4056.	1.1	2
40	The influence of nanoparticles on the excitation energies of the photochromic dihydroazulene/vinylheptafulvene system. Physical Chemistry Chemical Physics, 2019, 21, 6689-6698.	1.3	12
41	Graphical user interface for an easy and reliable construction of input files to CP2K. Journal of Molecular Modeling, 2019, 25, 115.	0.8	1
42	Luminescence Spectroscopy of Rhodamine Homodimer Dications <i>in Vacuo</i> Reveals Strong Dyeâ€Ðye Interactions. ChemPhysChem, 2019, 20, 533-537.	1.0	11
43	Simulation framework for screening of molecular solar thermal systems in the context of a hybrid device. Chemical Physics, 2019, 519, 92-100.	0.9	10
44	Molecular Solar Thermal Energy Storage Systems with Long Discharge Times Based on the Dihydroazulene/Vinylheptafulvene Couple. European Journal of Organic Chemistry, 2019, 2019, 1986-1993.	1.2	28
45	Theoretical study of the NMR chemical shift of Xe in supercritical condition. Journal of Molecular Modeling, 2018, 24, 62.	0.8	3
46	The quest for determining one-electron redox potentials of azulene-1-carbonitriles by calculation. Physical Chemistry Chemical Physics, 2018, 20, 7438-7446.	1.3	12
47	Multistate Photoswitches: Macrocyclic Dihydroazulene/Azobenzene Conjugates. Angewandte Chemie - International Edition, 2018, 57, 6069-6072.	7.2	32
48	Multistate Photoswitches: Macrocyclic Dihydroazulene/Azobenzene Conjugates. Angewandte Chemie, 2018, 130, 6177-6180.	1.6	15
49	Benchmarking triplet–triplet annihilation photon upconversion schemes. Physical Chemistry Chemical Physics, 2018, 20, 12182-12192.	1.3	19
50	Subphthalocyanine-radiaannulene scaffold – a multi-electron acceptor and strong chromophore. Chemical Communications, 2018, 54, 2763-2766.	2.2	6
51	Molecular solar thermal systems – control of light harvesting and energy storage by protonation/deprotonation. RSC Advances, 2018, 8, 6356-6364.	1.7	21
52	Elucidation of the intrinsic optical properties of hydrogen-bonded and protonated flavin chromophores by photodissociation action spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 28678-28684.	1.3	9
53	Hydration of Atmospheric Molecular Clusters II: Organic Acid–Water Clusters. Journal of Physical Chemistry A, 2018, 122, 8549-8556.	1.1	36
54	Complexation of Fullerenes by Subphthalocyanine Dimers. Organic Letters, 2018, 20, 5821-5825.	2.4	20

#	Article	IF	CITATIONS
55	Density Functional Theory Investigation on Boron Subphthalocyanine–Ferrocene Dyads. Journal of Physical Chemistry A, 2018, 122, 7620-7627.	1.1	3
56	Donorâ^'Acceptorâ€Functionalized Subphthalocyanines for Dye‧ensitized Solar Cells. ChemPhotoChem, 2018, 2, 976-985.	1.5	31
57	Hydration of Atmospheric Molecular Clusters: A New Method for Systematic Configurational Sampling. Journal of Physical Chemistry A, 2018, 122, 5026-5036.	1.1	53
58	The influence of nanoparticles on the polarizabilities and hyperpolarizabilities of photochromic molecules. Physical Chemistry Chemical Physics, 2018, 20, 23320-23327.	1.3	9
59	Heterogeneous nucleation of polymorphs on polymer surfaces: polymer–molecule interactions using a heterogeneous dielectric solvation model. Journal of Molecular Modeling, 2018, 24, 156.	0.8	2
60	Heterogeneous nucleation of polymorphs on polymer surfaces: polymer–molecule interactions using a Coulomb and van der Waals model. Journal of Molecular Modeling, 2018, 24, 155.	0.8	5
61	A DFT Study of Multimode Switching in a Combined DHA/VHF-DTE/DHB System for Use in Solar Heat Batteries. Journal of Physical Chemistry C, 2017, 121, 195-201.	1.5	17
62	Dialkylated Dihydroazulene and Vinylheptafulvene Derivatives – Synthesis and Switching Properties. European Journal of Organic Chemistry, 2017, 2017, 2932-2939.	1.2	15
63	Predicting transport regime and local electrostatic environment from Coulomb blockade diamond sizes. Journal of Chemical Physics, 2017, 146, 104306.	1.2	2
64	A Study of Electrocyclic Reactions in a Molecular Junction: Mechanistic and Energetic Requirements for Switching in the Coulomb Blockade Regime. ChemPhysChem, 2017, 18, 1492-1492.	1.0	0
65	Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nature Communications, 2017, 8, 15436.	5.8	106
66	Benchmark Study of the Structural and Thermochemical Properties of a Dihydroazulene/Vinylheptafulvene Photoswitch. Journal of Physical Chemistry A, 2017, 121, 3148-3154.	1.1	23
67	A Study of Electrocyclic Reactions in a Molecular Junction: Mechanistic and Energetic Requirements for Switching in the Coulomb Blockade Regime. ChemPhysChem, 2017, 18, 1517-1525.	1.0	2
68	Stepwise "Dark Photoswitching―of Photochromic Dimers in a Junction. Journal of Physical Chemistry C, 2017, 121, 3163-3170.	1.5	3
69	Towards Storage of Solar Energy in Photochromic Molecules: Benzannulation of the Dihydroazulene/Vinylheptafulvene Couple. ChemPhotoChem, 2017, 1, 206-212.	1.5	29
70	Expanding the Hammett Correlations for the Vinylheptafulvene Ringâ€Closure Reaction. European Journal of Organic Chemistry, 2017, 2017, 1052-1062.	1.2	8
71	Thienoâ€Fused Subporphyrazines: A New Class of Light Harvesters. Chemistry - A European Journal, 2017, 23, 16194-16198.	1.7	21
72	Photoswitchable Dihydroazulene Macrocycles for Solar Energy Storage: The Effects of Ring Strain. Journal of Organic Chemistry, 2017, 82, 10398-10407.	1.7	33

#	Article	IF	CITATIONS
73	Molecular Properties of Sandwiched Molecules Between Electrodes and Nanoparticles. Advances in Quantum Chemistry, 2017, 75, 53-102.	0.4	7
74	Density Functional Theory Study of the Solvent Effects on Systematically Substituted Dihydroazulene/Vinylheptafulvene Systems: Improving the Capability of Molecular Energy Storage. Journal of Physical Chemistry A, 2017, 121, 8856-8865.	1.1	18
75	Solar Thermal Energy Storage in a Photochromic Macrocycle. Chemistry - A European Journal, 2016, 22, 10796-10800.	1.7	36
76	Fine-tuning the lifetimes and energy storage capacities of meta-stable vinylheptafulvenes via substitution at the vinyl position. RSC Advances, 2016, 6, 49003-49010.	1.7	23
77	Boron Subphthalocyanine Based Molecular Triad Systems for the Capture of Solar Energy. Journal of Physical Chemistry A, 2016, 120, 7694-7703.	1.1	10
78	Aromaticityâ€Controlled Energy Storage Capacity of the Dihydroazuleneâ€Vinylheptafulvene Photochromic System. Chemistry - A European Journal, 2016, 22, 14567-14575.	1.7	55
79	First hyperpolarizability of para-aminoaniline induced by a variety of gold nano particles. Physical Chemistry Chemical Physics, 2016, 18, 24343-24349.	1.3	3
80	Theoretical Investigation of Substituent Effects on the Dihydroazulene/Vinylheptafulvene Photoswitch: Increasing the Energy Storage Capacity. Journal of Physical Chemistry A, 2016, 120, 9782-9793.	1.1	39
81	Characterisation of dihydroazulene and vinylheptafulvene derivatives using Raman spectroscopy: The CN-stretching region. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 161, 70-76.	2.0	3
82	Azulenium chemistry: towards new derivatives of photochromic dihydroazulenes. Organic and Biomolecular Chemistry, 2016, 14, 2403-2412.	1.5	14
83	Gas-Phase Spectroscopy of a Vinylheptafulvene Chromophore. European Journal of Mass Spectrometry, 2015, 21, 569-577.	0.5	3
84	Controlling Two‣tep Multimode Switching of Dihydroazulene Photoswitches. Chemistry - A European Journal, 2015, 21, 3968-3977.	1.7	36
85	Towards Solar Energy Storage in the Photochromic Dihydroazulene–Vinylheptafulvene System. Chemistry - A European Journal, 2015, 21, 7454-7461.	1.7	79
86	Tracking molecular resonance forms of donor–acceptor push–pull molecules by single-molecule conductance experiments. Nature Communications, 2015, 6, 10233.	5.8	36
87	Computational Study of the Effect of Glyoxal–Sulfate Clustering on the Henry's Law Coefficient of Glyoxal. Journal of Physical Chemistry A, 2015, 119, 4509-4514.	1.1	35
88	Computational Methodology Study of the Optical and Thermochemical Properties of a Molecular Photoswitch. Journal of Physical Chemistry A, 2015, 119, 896-904.	1.1	57
89	Dark Photoswitching Induces Coulomb Blockade Diamond Collapse. Journal of Physical Chemistry C, 2015, 119, 14829-14833.	1.5	6
90	Rayleigh light scattering properties of atmospheric molecular clusters consisting of sulfuric acid and bases. Physical Chemistry Chemical Physics, 2015, 17, 15701-15709.	1.3	14

#	Article	IF	CITATIONS
91	Optical properties of pyridine and methyl-pyridinium in water using DFT/MM. Molecular Physics, 2015, 113, 3253-3263.	0.8	2
92	Glyoxal and Methylglyoxal Setschenow Salting Constants in Sulfate, Nitrate, and Chloride Solutions: Measurements and Gibbs Energies. Environmental Science & Technology, 2015, 49, 11500-11508.	4.6	64
93	The chemistry of Coulomb blockade diamonds for 1,4-diamino-benzene. Chemical Physics, 2015, 459, 40-44.	0.9	3
94	The <scp>D</scp> alton quantum chemistry program system. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 269-284.	6.2	1,166
95	Computational assignment of redox states to Coulomb blockade diamonds. Physical Chemistry Chemical Physics, 2014, 16, 17473-17478.	1.3	11
96	Computational approaches for efficiently modelling of small atmospheric clusters. Chemical Physics Letters, 2014, 615, 26-29.	1.2	75
97	Computational study of the Rayleigh light scattering properties of atmospheric pre-nucleation clusters. Physical Chemistry Chemical Physics, 2014, 16, 10883-10890.	1.3	37
98	A Hybrid Density Functional Theory/Molecular Mechanics Approach for Linear Response Properties in Heterogeneous Environments. Journal of Chemical Theory and Computation, 2014, 10, 989-1003.	2.3	39
99	QM/MM-MD Simulations of Conjugated Polyelectrolytes: A Study of Luminescent Conjugated Oligothiophenes for Use as Biophysical Probes. Journal of Physical Chemistry A, 2014, 118, 3419-3428.	1.1	26
100	Molecular Interaction of Pinic Acid with Sulfuric Acid: Exploring the Thermodynamic Landscape of Cluster Growth. Journal of Physical Chemistry A, 2014, 118, 7892-7900.	1.1	64
101	Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in <i>>para</i> >nitroaniline. Molecular Physics, 2013, 111, 1235-1248.	0.8	79
102	Assessment of binding energies of atmospherically relevant clusters. Physical Chemistry Chemical Physics, 2013, 15, 16442.	1.3	130
103	Ambient reaction kinetics of atmospheric oxygenated organics with the OH radical: a computational methodology study. Physical Chemistry Chemical Physics, 2013, 15, 9636.	1.3	36
104	Interaction of Glycine with Common Atmospheric Nucleation Precursors. Journal of Physical Chemistry A, 2013, 117, 12990-12997.	1.1	55
105	Influence of Nucleation Precursors on the Reaction Kinetics of Methanol with the OH Radical. Journal of Physical Chemistry A, 2013, 117, 6695-6701.	1.1	51
106	Structures and reaction rates of the gaseous oxidation of SO ₂ by an O ₃ ^{â`'} (H _{â`'(H_{â`'(H_{â`'2,amp;lt;sub>â`'(H_{â`'2,amp;lt;sub>â`'2,amp;lt;sub>â`'_{2,amp;lt;sub>â`'^{2,amp;lt;sub>2,amp;lt;sub>â`'^{2,amp;lt;sub>2,amp;lt;sub>â`'^{2,amp;lt;sub>2,amp}}}}}}}}	np;g t;2 &ar	np;l 2 ;4sub&am
107	3639-3652. Assessment of Density Functional Theory in Predicting Structures and Free Energies of Reaction of Atmospheric Prenucleation Clusters. Journal of Chemical Theory and Computation, 2012, 8, 2071-2077.	2.3	168
108	Obtaining Enhanced Circular Dichroism in [4]Heterohelicenium Analogues. Journal of Physical	1.1	14

⁷⁸ Chemistry A, 2012, 116, 8744-8752.

#	Article	IF	CITATIONS
109	On the importance of excited state dynamic response electron correlation in polarizable embedding methods. Journal of Computational Chemistry, 2012, 33, 2012-2022.	1.5	38
110	Hybrid density functional theory/molecular mechanics calculations of two-photon absorption of dimethylamino nitro stilbene in solution. Physical Chemistry Chemical Physics, 2011, 13, 12506.	1.3	64
111	Racemization Mechanisms and Electronic Circular Dichroism of [4]Heterohelicenium Dyes: A Theoretical Study. Journal of Physical Chemistry A, 2011, 115, 12025-12033. Ab initio studies of	1.1	18
112	O<sub>2</sub><sup>â [~] </sup>(H<sub&ar and O<sub>3</sub><sup>â [~] </sup>(H<sub&ar anionic molecular clusters, <i>n</i>â‰ # 2. Atmospheric Chemistry and	np;gt;2&an np;gt;2&an	np;lt;/sub&am np;l t ;/sub&am
113	Physics, 2011, 11, 7133-7142. Direct probing of ion pair formation using a symmetric triangulenium dye. Photochemical and Photobiological Sciences, 2011, 10, 1963-1973.	1.6	26
114	A theoretical approach to molecular single-electron transistors. Theoretical Chemistry Accounts, 2011, 130, 839-850.	0.5	9
115	Fluorescence and phosphorescence of acetone in neat liquid and aqueous solution studied by QM/MM and PCM approaches. International Journal of Quantum Chemistry, 2011, 111, 1511-1520.	1.0	17
116	Determining molecule–particle reaction parameters. International Journal of Quantum Chemistry, 2011, 111, 1740-1747.	1.0	3
117	The iterative selfâ€consistent reactionâ€field method: The refractive index of pure water. International Journal of Quantum Chemistry, 2011, 111, 904-913.	1.0	5
118	Computational protocols for prediction of solute NMR relative chemical shifts. A case study of <scp>L</scp> â€tryptophan in aqueous solution. Journal of Computational Chemistry, 2011, 32, 2853-2864.	1.5	25
119	Outcome in high risk patients with unprotected left main coronary artery stenosis treated with percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 2010, 75, 101-108.	0.7	23
120	Calculated two-photon electronic transitions in sulfuric acid and its atmospheric relevance. Chemical Physics Letters, 2010, 498, 18-21.	1.2	1
121	Nonlinear optical properties of solvated molecules. Journal of Computational Methods in Sciences and Engineering, 2010, 10, 489-499.	0.1	0
122	Nonlinear Optical Effects Induced by Nanoparticles in Symmetric Molecules. Journal of Physical Chemistry C, 2010, 114, 20870-20876.	1.5	15
123	Solvatochromic Shifts in Uracil: A Combined MD-QM/MM Study. Journal of Chemical Theory and Computation, 2010, 6, 249-256.	2.3	66
124	The Effect of Solvation on the Mean Excitation Energy of Glycine. Journal of Physical Chemistry Letters, 2010, 1, 242-245.	2.1	20
125	Tribute to Mark A. Ratner. Journal of Physical Chemistry C, 2010, 114, 20293-20294.	1.5	0
126	On the existence of the H3 tautomer of adenine in aqueous solution. Rationalizations based on hybrid quantum mechanics/molecular mechanics predictions. Physical Chemistry Chemical Physics, 2010, 12, 761-768.	1.3	25

#	Article	IF	CITATIONS
127	Interpretation of the Ultrafast Photoinduced Processes in Pentacene Thin Films. Journal of the American Chemical Society, 2010, 132, 3431-3439.	6.6	59
128	Are there long-term benefits in following stable heart failure patients in a heart failure clinic?. Scandinavian Cardiovascular Journal, 2009, 43, 158-162.	0.4	6
129	Charge transfer excitation energies in pyridine–silver complexes studied by a QM/MM method. Chemical Physics Letters, 2009, 470, 285-288.	1.2	38
130	Charge-resonance excitations in symmetric molecules – Comparison of linear response DFT with CC3 for the excited states of a model dimer. Chemical Physics Letters, 2009, 478, 127-131.	1.2	11
131	Molecular Mechanics Interaction Models for Optical Electronic Properties. Journal of Computational and Theoretical Nanoscience, 2009, 6, 270-291.	0.4	7
132	On the accurate calculation of polarizabilities and second hyperpolarizabilities of polyacetylene oligomer chains using the CAM-B3LYP density functional. Journal of Chemical Physics, 2009, 130, 194114.	1.2	256
133	Prediction of spin-spin coupling constants in solution based on combined density functional theory/molecular mechanics. Journal of Chemical Physics, 2009, 130, 134508.	1.2	48
134	Solvent effects on the nitrogen NMR shielding and nuclear quadrupole coupling constants in 1-methyltriazoles. Chemical Physics Letters, 2008, 460, 129-136.	1.2	16
135	Determination of rate constants for the uptake process involving SO2 and an aerosol particle. A quantum mechanics/molecular mechanics and quantum statistical investigation. Chemical Physics, 2008, 348, 21-30.	0.9	7
136	On the Accuracy of Density Functional Theory to Predict Shifts in Nuclear Magnetic Resonance Shielding Constants due to Hydrogen Bonding. Journal of Chemical Theory and Computation, 2008, 4, 267-277.	2.3	51
137	From Molecules to Droplets. Advances in Quantum Chemistry, 2008, 55, 355-385.	0.4	4
138	Computational Quantum Chemistry: A New Approach to Atmospheric Nucleation. Advances in Quantum Chemistry, 2008, , 449-478.	0.4	39
139	On the performance of quantum chemical methods to predict solvatochromic effects: The case of acrolein in aqueous solution. Journal of Chemical Physics, 2008, 128, 194503.	1.2	76
140	Modelling spectroscopic properties of large molecular systems. The combined Density Functional Theory/Molecular Mechanics approach. Journal of Computational Methods in Sciences and Engineering, 2008, 7, 135-158.	0.1	4
141	Linear Response Theory in Connection to Density Functional Theory/Molecular Dynamics and Coupled Cluster/Molecular Dynamics Methods. Challenges and Advances in Computational Chemistry and Physics, 2008, , 349-380.	0.6	2
142	Density functional self-consistent quantum mechanics/molecular mechanics theory for linear and nonlinear molecular properties: Applications to solvated water and formaldehyde. Journal of Chemical Physics, 2007, 126, 154112.	1.2	144
143	NadyktoetÂal.Reply:. Physical Review Letters, 2007, 98, .	2.9	9
144	Nuclear magnetic shielding constants of liquid water: Insights from hybrid quantum mechanics/molecular mechanics models. Journal of Chemical Physics, 2007, 126, 034510.	1.2	59

#	Article	IF	CITATIONS
145	Solvent Effects on NMR Isotropic Shielding Constants. A Comparison between Explicit Polarizable Discrete and Continuum Approaches. Journal of Physical Chemistry A, 2007, 111, 4199-4210.	1.1	74
146	Two-Photon Cross-Sections of Photosensitizers in Vacuum, in Solution and within Proteins. AIP Conference Proceedings, 2007, , .	0.3	0
147	Theoretical Methods for Structured Environments. AIP Conference Proceedings, 2007, , .	0.3	0
148	Microscopic polarization in ropes and films of aligned carbon nanotubes. Journal of Computational Methods in Sciences and Engineering, 2007, 6, 353-364.	0.1	1
149	Gauge-origin independent magnetizabilities from hybrid quantum mechanics/molecular mechanics models: Theory and applications to liquid water. Chemical Physics Letters, 2007, 442, 322-328.	1.2	3
150	Hydrogen bonding effects on infrared and Raman spectra of drug molecules. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 66, 213-224.	2.0	48
151	Quantum Nature of the Sign Preference in Ion-Induced Nucleation. Physical Review Letters, 2006, 96, 125701.	2.9	72
152	Coupled Cluster and Density Functional Theory Studies of the Vibrational Contribution to the Optical Rotation of (S)-Propylene Oxide. Journal of the American Chemical Society, 2006, 128, 976-982.	6.6	77
153	Uptake of Phenol on Aerosol Particlesâ€. Journal of Physical Chemistry A, 2006, 110, 660-670.	1.1	18
154	2004, Volume 108A Sulfuric Acid and Sulfuric Acid Hydrates in the Gas Phase:Â A DFT Investigation. Journal of Physical Chemistry A, 2006, 110, 7982-7984.	1.1	10
155	CORRELATED ELECTRONIC STRUCTURE NONLINEAR RESPONSE METHODS FOR STRUCTURED ENVIRONMENTS. Annual Review of Physical Chemistry, 2006, 57, 365-402.	4.8	11
156	Neurohormonal activation and diagnostic value of cardiac peptides in patients with suspected mild heart failure. International Journal of Cardiology, 2006, 110, 324-333.	0.8	11
157	THE (HYPER)POLARIZABILITIES OF LIQUID WATER MODELLED USING COUPLED CLUSTER/MOLECULAR MECHANICS RESPONSE THEORY METHODS. , 2006, , 215-281.		0
158	Coexistence of metastable nitric acid dihydrates: A molecular level contribution to understanding the formation of polar stratospheric clouds crystals. Chemical Physics Letters, 2006, 426, 20-25.	1.2	7
159	The electronic spectrum of the micro-solvated alanine zwitterion calculated using the combined coupled cluster/molecular mechanics method. Chemical Physics Letters, 2006, 429, 430-435.	1.2	19
160	Density functional theory calculations of hydrogen bonding energies of drug molecules. Computational and Theoretical Chemistry, 2006, 776, 61-68.	1.5	5
161	Theoretical investigation of the coexistence of \hat{I}_{\pm} and \hat{I}^2 -nitric acid trihydrates (NAT) molecular conformations. Chemical Physics, 2006, 324, 210-215.	0.9	8
162	Tei index and neurohormonal activation in patients with incident heart failure: Serial changes and prognostic value. European Journal of Heart Failure, 2006, 8, 599-608.	2.9	32

#	Article	IF	CITATIONS
163	Statistical mechanically averaged molecular properties of liquid water calculated using the combined coupled cluster/molecular dynamics method. Journal of Chemical Physics, 2006, 124, 124503.	1.2	55
164	Two-photon absorption cross sections: An investigation of solvent effects. Theoretical studies on formaldehyde and water. Journal of Chemical Physics, 2006, 125, 184501.	1.2	35
165	Multiconfigurational Self-Consistent Field-Molecular Mechanics Response Methods. Challenges and Advances in Computational Chemistry and Physics, 2006, , 283-298.	0.6	0
166	Coupled cluster calculations of the optical rotation of S-propylene oxide in gas phase and solution. Chemical Physics Letters, 2005, 401, 385-392.	1.2	94
167	A molecule wired: Electrostatic investigation. Chemical Physics Letters, 2005, 405, 118-122.	1.2	8
168	Diagnostic accuracy of plasma brain natriuretic peptide and aminoterminalâ€proBNP in mild heart failure depends on assay and introduction of therapy. Scandinavian Journal of Clinical and Laboratory Investigation, 2005, 65, 633-648.	0.6	8
169	2,6,10-Tris(dialkylamino)trioxatriangulenium salts: a new promising fluorophore. Ion-pair formation and aggregation in non-polar solvents. Photochemical and Photobiological Sciences, 2005, 4, 568.	1.6	45
170	Frequency-Dependent Polarizabilities of Amino Acids as Calculated by an Electrostatic Interaction Model. Journal of Chemical Theory and Computation, 2005, 1, 626-633.	2.3	20
171	Refractive Index of Liquid Water in Different Solvent Models. Journal of Physical Chemistry A, 2005, 109, 905-914.	1.1	6
172	Two-Photon Photosensitized Production of Singlet Oxygen in Water. Journal of the American Chemical Society, 2005, 127, 255-269.	6.6	172
173	A Theoretical Model to Calculate Fundamental Physical Parameters for Molecule–Particle Interactions. Advances in Quantum Chemistry, 2005, , 125-142.	0.4	5
174	Two-Photon Photosensitized Production of Singlet Oxygen:Â Sensitizers with Phenyleneâ^'Ethynylene-Based Chromophores. Journal of Organic Chemistry, 2005, 70, 1134-1146.	1.7	118
175	Coupled Cluster Calculation of the n → π* Electronic Transition of Acetone in Aqueous Solution. Journal of Physical Chemistry A, 2005, 109, 8001-8010.	1.1	107
176	Interaction energies between aerosol precursors formed in the photo-oxidation of α-pinene. Molecular Physics, 2004, 102, 2361-2368.	0.8	22
177	Solvent effects on the n→π[sup â^—] electronic transition in formaldehyde: A combined coupled cluster/molecular dynamics study. Journal of Chemical Physics, 2004, 121, 8435.	1.2	75
178	Molecular properties of molecules between electrodes. Theoretical Chemistry Accounts, 2004, 111, 122-131.	0.5	7
179	A coupled cluster study of the oriented circular dichroism of the n→πâ^— electronic transition in cyclopropanone and natural optical active related structures. Chemical Physics Letters, 2004, 391, 259-266.	1.2	18
180	Second harmonic generation second hyperpolarizability of water calculated using the combined coupled cluster dielectric continuum or different molecular mechanics methods. Journal of Chemical Physics, 2004, 120, 3787-3798.	1.2	67

#	Article	IF	CITATIONS
181	Sulfuric Acid and Sulfuric Acid Hydrates in the Gas Phase: A DFT Investigationâ€. Journal of Physical Chemistry A, 2004, 108, 8914-8929.	1.1	78
182	Sign Change of Hyperpolarizabilities of Solvated Water, Revised:Â Effects of Equilibrium and Nonequilibrium Solvationâ€. Journal of Physical Chemistry A, 2004, 108, 8961-8965.	1.1	21
183	A Theoretical Study of the Reaction between CH3S(OH)CH3and O2â€. Journal of Physical Chemistry A, 2004, 108, 8659-8671.	1.1	28
184	Linear Response Properties of Liquid Water Calculated Using CC2 and CCSD within Different Molecular Mechanics Methodsâ€. Journal of Physical Chemistry A, 2004, 108, 8646-8658.	1.1	52
185	Then→ ï€* Electronic Transition in Microsolvated Formaldehyde. A Coupled Cluster and Combined Coupled Cluster/Molecular Mechanics Studyâ€. Journal of Physical Chemistry A, 2004, 108, 8624-8632.	1.1	44
186	Solvent Effects on Rotatory Strength Tensors. 1. Theory and Application of the Combined Coupled Cluster/Dielectric Continuum Model. Journal of Physical Chemistry A, 2004, 108, 3632-3641.	1.1	42
187	The Static Polarizability and Second Hyperpolarizability of Fullerenes and Carbon Nanotubesâ€. Journal of Physical Chemistry A, 2004, 108, 8795-8800.	1.1	41
188	Microscopic and Macroscopic Polarization in C60 Fullerene Clusters as Calculated by an Electrostatic Interaction Model. Journal of Physical Chemistry B, 2004, 108, 8226-8233.	1.2	31
189	Effect of Molecular Structure and Hydration on the Uptake of Gas-Phase Sulfuric Acid by Charged Clusters/Ultrafine Particles. Aerosol Science and Technology, 2004, 38, 349-353.	1.5	20
190	Molecular electric properties of liquid water calculated using the combined coupled cluster/molecular mechanics method. Computational and Theoretical Chemistry, 2003, 632, 207-225.	1.5	14
191	Saturation of the Third-Order Polarizability of Carbon Nanotubes Characterized by a Dipole Interaction Model. Nano Letters, 2003, 3, 661-665.	4.5	32
192	Coupled Cluster/Molecular Mechanics Method:  Implementation and Application to Liquid Water. Journal of Physical Chemistry A, 2003, 107, 2578-2588.	1.1	70
193	A Dipole Interaction Model for the Molecular Second Hyperpolarizability. Journal of Physical Chemistry A, 2003, 107, 2270-2276.	1.1	43
194	A CC2 dielectric continuum model and a CC2 molecular mechanics model. Molecular Physics, 2003, 101, 2055-2071.	0.8	37
195	Investigation of Particleâ^'Molecule Interactions by Use of a Dielectric Continuum Model. Journal of Physical Chemistry A, 2003, 107, 8623-8629.	1.1	7
196	Response theory in the multipole reaction field model for equilibrium and nonequilibrium solvation: Exact theory and the second order polarization propagator approximation. Journal of Chemical Physics, 2003, 119, 3849-3870.	1.2	15
197	Linear response functions for coupled cluster/molecular mechanics including polarization interactions. Journal of Chemical Physics, 2003, 118, 1620-1633.	1.2	117
198	A quantum mechanical/molecular mechanical approach to the investigation of particle–molecule interactions. Journal of Chemical Physics, 2003, 118, 10085-10092.	1.2	4

#	Article	IF	CITATIONS
199	Nonlinear optical response properties of molecules in condensed phases using the coupled cluster/dielectric continuum or molecular mechanics methods. Journal of Chemical Physics, 2003, 119, 10519-10535.	1.2	55
200	P2277 Plasma brain natriuretic peptide, myocardial performance index and coronary heart disease. European Heart Journal, 2003, 24, 436.	1.0	0
201	Cubic nonlinear optical response of a molecule in an inhomogeneous solvation environment: A response theory formalism. Journal of Chemical Physics, 2002, 116, 10902-10908.	1.2	11
202	The QM/MM approach for wavefunctions, energies and response functions within self-consistent field and coupled cluster theories. Molecular Physics, 2002, 100, 1813-1828.	0.8	122
203	Structure of a Metal Ion Binding Site in β-Lactamase: Quantum Mechanical Study of the Influence of Hydrogen-Bonding Network and Backbone Constraints. Journal of Physical Chemistry A, 2002, 106, 1046-1053.	1.1	16
204	Effect of Solvent on the O2(a1Δg) → O2(b1Σg+) Absorption Spectrum: Demonstrating the Importance of Equilibrium vs Nonequilibrium Solvation. Journal of Physical Chemistry A, 2002, 106, 5263-5270.	1.1	18
205	Linear response properties for solvated molecules described by a combined multiconfigurational self-consistent-field/molecular mechanics model. Journal of Chemical Physics, 2002, 116, 3730-3738.	1.2	66
206	Electric field gradients of water: A systematic investigation of basis set, electron correlation, and rovibrational effects. Journal of Chemical Physics, 2002, 116, 1424-1434.	1.2	20
207	A second-order, quadratically convergent multiconfigurational self-consistent field polarizable continuum model for equilibrium and nonequilibrium solvation. Journal of Chemical Physics, 2002, 117, 13-26.	1.2	71
208	Polarizability of molecular clusters as calculated by a dipole interaction model. Journal of Chemical Physics, 2002, 116, 4001-4010.	1.2	180
209	Electronic states of Cu(111)/C6H6. A dielectric continuum approach and a heterogeneous solvation model. Chemical Physics, 2002, 278, 53-68.	0.9	4
210	Dipole and quadrupole moments of liquid water calculated within the coupled cluster/molecular mechanics method. Chemical Physics Letters, 2002, 364, 379-386.	1.2	47
211	Heterogeneous solvation: An ab initio approach. Journal of Chemical Physics, 2001, 115, 3792-3803.	1.2	35
212	Frequency-Dependent Polarizability of Boron Nitride Nanotubes:Â A Theoretical Study. Journal of Physical Chemistry B, 2001, 105, 10243-10248.	1.2	42
213	A multipole second order MÃ,ller–Plesset solvent reaction field method. Journal of Chemical Physics, 2001, 114, 7753-7760.	1.2	11
214	Two-Photon Singlet Oxygen Sensitizers:Â Quantifying, Modeling, and Optimizing the Two-Photon Absorption Cross Section. Journal of Physical Chemistry A, 2001, 105, 11488-11495.	1.1	71
215	A phase-space method for arbitrary bimolecular gas-phase reactions: Theoretical description. International Journal of Quantum Chemistry, 2001, 84, 479-492.	1.0	8
216	A phase-space method for arbitrary bimolecular gas-phase reactions: Application to the CH3CHO+HO and CH3OOH+HO reactions. International Journal of Quantum Chemistry, 2001, 84, 493-512.	1.0	8

#	Article	IF	CITATIONS
217	An atomic capacitance-polarizability model for the calculation of molecular dipole moments and polarizabilities. International Journal of Quantum Chemistry, 2001, 84, 513-522.	1.0	34
218	Semi-empirical studies of cobalamins, corrin models, and cobaloximes. The nucleotide loop does not strain the corrin ring in cobalamins. Inorganica Chimica Acta, 2001, 323, 5-15.	1.2	13
219	Nonlinear optical response of molecule in inhomogeneous solvation environment: A response theory formalism. Journal of Chemical Physics, 2001, 115, 8185-8192.	1.2	13
220	MP2 correlation effects upon the electronic and vibrational properties of polyyne. Journal of Chemical Physics, 2001, 114, 5917-5922.	1.2	26
221	Wavefunctions and eigenvalues of image potential states. Journal of Chemical Physics, 2001, 114, 3800-3808.	1.2	5
222	Time-resolved two-photon photoemission spectroscopy of image potential states: A phenomenological approach. Journal of Chemical Physics, 2001, 115, 4314-4321.	1.2	5
223	The combined multiconfigurational self-consistent-field/molecular mechanics wave function approach. Journal of Chemical Physics, 2001, 115, 2393-2400.	1.2	66
224	A quantum mechanical method for calculating nonlinear optical properties of condensed phase molecules coupled to a molecular mechanics field: A quadratic multiconfigurational self-consistent-field/molecular mechanics response method. Journal of Chemical Physics, 2001, 115, 7843-7851.	1.2	56
225	Potential energy surfaces of image potential states. Journal of Chemical Physics, 2001, 114, 3790-3799.	1.2	6
226	Proton transfer reactions in solution. International Journal of Quantum Chemistry, 2000, 77, 221-239.	1.0	0
227	Unrestricted Hartree–Fock band structure calculations for polymers: Application to a cross-talk system. Journal of Chemical Physics, 2000, 113, 5958-5964.	1.2	3
228	A theoretical study of the electronic spectrum of water. Journal of Chemical Physics, 2000, 113, 8101-8112.	1.2	68
229	Static and Frequency-Dependent Polarizability Tensors for Carbon Nanotubes. Journal of Physical Chemistry B, 2000, 104, 10462-10466.	1.2	64
230	Frequency-Dependent Molecular Polarizability Calculated within an Interaction Model. Journal of Physical Chemistry A, 2000, 104, 1563-1569.	1.1	60
231	O2(a1Δg) Absorption and O2(b1Σg+) Emission in Solution: Quantifying the aâ~'b Stokes Shiftâ€. Journal of Physical Chemistry A, 2000, 104, 10550-10555.	1.1	24
232	A Study of the Nitrogen NMR Spectra of Azoles and their Solvent Dependence. Journal of Physical Chemistry A, 2000, 104, 1466-1473.	1.1	29
233	Quadratic response of molecules in a nonequilibrium and equilibrium solvation model: Generalizations to include both singlet and triplet perturbations. Journal of Chemical Physics, 1999, 111, 2678-2685.	1.2	10
234	Rovibrationally averaged magnetizability, rotational g factor, and indirect spin–spin coupling of the hydrogen fluoride molecule. Journal of Chemical Physics, 1999, 110, 9463-9468.	1.2	59

#	Article	IF	CITATIONS
235	Coupled cluster response theory for solvated molecules in equilibrium and nonequilibrium solvation. Journal of Chemical Physics, 1999, 110, 8348-8360.	1.2	99
236	A coupled-cluster solvent reaction field method. Journal of Chemical Physics, 1999, 110, 1365-1375.	1.2	93
237	Singlet Sigma: The "Other―Singlet Oxygen in Solution. Photochemistry and Photobiology, 1999, 70, 369-379.	1.3	24
238	Radiative Transitions of Singlet Oxygen: New Tools, New Techniques and New Interpretations. Photochemistry and Photobiology, 1999, 70, 531-539.	1.3	45
239	Studies of hyperpolarizabilities forpara-nitroaniline in the charge-transfer state: Application of a reaction-field response method. International Journal of Quantum Chemistry, 1999, 75, 449-456.	1.0	9
240	Solvent effects on the NMR parameters of H2S and HCN. , 1999, 20, 1281-1291.		34
241	Frequency-Dependent Molecular Polarizability and Refractive Index:Â Are Substituent Contributions Additive?. Journal of Physical Chemistry A, 1999, 103, 1818-1821.	1.1	25
242	Cubic Optical Response of Molecules in a Nonequilibrium and Equilibrium Solvation Model. Journal of Physical Chemistry A, 1999, 103, 8375-8383.	1.1	11
243	The al̂"g → X3Σg- Transition in Molecular Oxygen:  Interpretation of Solvent Effects on Spectral Shifts. Journal of Physical Chemistry A, 1999, 103, 3418-3422.	1.1	31
244	Refractive Indices of Molecules in Vapor and Liquid:  Calculations on Benzene. Journal of Physical Chemistry A, 1999, 103, 8447-8457.	1.1	3
245	Singlet Sigma: The "Other―Singlet Oxygen in Solution. Photochemistry and Photobiology, 1999, 70, 369.	1.3	34
246	Dynamical Model for SN2 Reactions in Microsolution: The Cl- + CH3Cl -> CH3 + Cl- Reaction. Molecular Dynamics Simulation of Reaction Clusters Acta Chemica Scandinavica, 1999, 53, 1043-1053.	0.7	5
247	Atomic magnetizability tensors of benzene and fluoro- and chlorobenzenes. Magnetic Resonance in Chemistry, 1998, 36, 92-97.	1.1	8
248	Some recent developments of high-order response theory. International Journal of Quantum Chemistry, 1998, 70, 219-239.	1.0	33
249	Polarizabilities of the First Excited (a1l̂"g) and Ground (X3) States of Molecular Oxygen. Journal of Physical Chemistry A, 1998, 102, 8970-8973.	1.1	33
250	Solvent Effect on the O2(bΣg+) → O2(a1Δg) Emission Spectrum. Journal of Physical Chemistry A, 1998, 102, 1498-1500.	1.1	25
251	Atomic Charges of the Water Molecule and the Water Dimer. Journal of Physical Chemistry A, 1998, 102, 7686-7691.	1.1	51
252	Solvent effects on nuclear shieldings and spin–spin couplings of hydrogen selenide. Journal of Chemical Physics, 1998, 108, 2528-2537.	1.2	58

#	Article	IF	CITATIONS
253	Solvent Effects on the O2(aΔg)â^'O2(X3Σg-) Radiative Transition:  Comments Regarding Charge-Transfer Interactions. Journal of Physical Chemistry A, 1998, 102, 9829-9832.	1.1	67
254	The Cotton–Mouton effect of liquid water. Part II: The semi-continuum model. Journal of Chemical Physics, 1998, 108, 599-603.	1.2	20
255	Dielectric and optical properties of pure liquids by means ofab initioreaction field theory. Physical Review E, 1998, 57, 4778-4785.	0.8	15
256	Nonlinear optical response of molecules in a nonequilibrium solvation model. Journal of Chemical Physics, 1998, 109, 5576-5584.	1.2	58
257	Excited state polarizabilities in solution obtained by cubic response theory: Calculations on para-, ortho-, and meta-nitroaniline. Journal of Chemical Physics, 1998, 109, 6351-6357.	1.2	33
258	Some recent developments of highâ€order response theory. International Journal of Quantum Chemistry, 1998, 70, 219-239.	1.0	3
259	Synthesis of trans-(+-)-1,2,3,3a,4a,5,6,7-Octaphenyl-3aH,4aH-dicyclopenta[b,e][1,4]dithiin by Dimerization and Further Rearrangement of the Transient 2,3,4,5-Tetraphenyl-2,4-cyclopentadiene-1-thione Acta Chemica Scandinavica, 1998, 52, 950-957.	0.7	5
260	Basis Set and Nuclear Relaxation Effects in Hole and Electron Transfer in a Water Dimer System Acta Chemica Scandinavica, 1998, 52, 864-867.	0.7	0
261	Hyperpolarizability depolarization ratios of nitroanilines. Journal of Chemical Physics, 1997, 107, 9063-9066.	1.2	17
262	Electric and magnetic properties of the nitroethene molecule. Molecular Physics, 1997, 92, 89-96.	0.8	11
263	A multipole reaction-field model for gauge-origin independent magnetic properties of solvated molecules. Journal of Chemical Physics, 1997, 106, 1170-1180.	1.2	57
264	Chemical Shifts in Liquid Water Calculated by Molecular Dynamics Simulations and Shielding Polarizabilities. Journal of Physical Chemistry B, 1997, 101, 4105-4110.	1.2	57
265	Investigation of the temperature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation. Journal of Chemical Physics, 1997, 107, 5319-5331.	1.2	539
266	The Cotton-Mouton effect of liquid water. Part I: The dielectric continuum model. Journal of Chemical Physics, 1997, 107, 894-901.	1.2	20
267	Collision-induced electronic transitions in complexes between benzene and molecular oxygen. Chemical Physics, 1997, 220, 79-94.	0.9	25
268	The magnetizability anisotropy and rotational g factor of deuterium hydride and the deuterium molecule. Chemical Physics Letters, 1997, 271, 163-166.	1.2	14
269	Unique determination of the cavity radius in Onsager reaction field theory. Chemical Physics Letters, 1997, 275, 145-150.	1.2	40
270	Calculations of Intramolecular Reorganization Energies for Electron-Transfer Reactions Involving Organic Systems. The Journal of Physical Chemistry, 1996, 100, 7411-7417.	2.9	42

#	Article	IF	CITATIONS
271	Molecular Response Method for Solvated Molecules in Nonequilibrium Solvation. The Journal of Physical Chemistry, 1996, 100, 9116-9126.	2.9	77
272	Full CI calculations of the magnetizability and rotational g factor of the hydrogen molecule. Computational and Theoretical Chemistry, 1996, 388, 231-235.	1.5	17
273	Magnetizability and nuclear shielding constants of solvated water. Chemical Physics Letters, 1996, 253, 443-447.	1.2	58
274	Theory of hyperfine coupling constants of solvated molecules: Applications involving methyl and ClO2 radicals in different solvents. Journal of Chemical Physics, 1996, 104, 629-635.	1.2	15
275	Calculation of nuclear shielding constants and magnetizabilities of the hydrogen fluoride molecule. Journal of Chemical Physics, 1996, 104, 648-653.	1.2	37
276	Magnetizabilities and Nuclear Shielding Constants of the Fluoromethanes in the Gas Phase and Solution. The Journal of Physical Chemistry, 1996, 100, 19771-19782.	2.9	32
277	Multiconfigurational selfâ€consistent reaction field theory for nonequilibrium solvation. Journal of Chemical Physics, 1995, 103, 9010-9023.	1.2	103
278	Sign change of hyperpolarizabilities of solvated water. Journal of Chemical Physics, 1995, 102, 9362-9367.	1.2	100
279	Response Theory and Calculations of Molecular Hyperpolarizabilities. Advances in Quantum Chemistry, 1995, 26, 165-237.	0.4	71
280	Laser field induced charge transfer: Para-nitroaniline coupled to a quantum mechanical radiation field. Theoretica Chimica Acta, 1995, 90, 307-322.	0.9	6
281	Solvent Effects on the Oxygen-Organic Molecule Charge-Transfer Absorption. The Journal of Physical Chemistry, 1994, 98, 11918-11923.	2.9	24
282	Solvent induced polarizabilities and hyperpolarizabilities of paraâ€nitroaniline studied by reaction field linear response theory. Journal of Chemical Physics, 1994, 100, 8240-8250.	1.2	169
283	Molecular Dynamics Simulation of the Solvation of Benzene Anion. Structural and Dynamic Aspects. The Journal of Physical Chemistry, 1994, 98, 8209-8215.	2.9	0
284	A multiconfiguration selfâ€consistent reaction field response method. Journal of Chemical Physics, 1994, 100, 6597-6607.	1.2	146
285	Basis set effects on the direct calculation of intermolecular coupling elements for electron transfer reactions. Inorganica Chimica Acta, 1994, 226, 237-245.	1.2	4
286	Dynamical model for SN2 reactions in solution. The Clâ^'+CH3Cl → ClCH3 + Clâ^' reaction. Chemical Physics, 1994, 182, 249-262.	0.9	29
287	Proton transfer-based molecular devices: Theory and review. Computational and Theoretical Chemistry, 1994, 314, 49-71.	1.5	4
288	Electron self-exchange in azurin: calculation of the superexchange electron tunneling rate Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5443-5445.	3.3	32

#	Article	IF	CITATIONS
289	Effects of Tyr-83 nitromodification and Phe-82 phenyl group rotation on electronic transmission coefficients at the remote electron-transfer site of higher plant plastocyanins. The Journal of Physical Chemistry, 1992, 96, 4451-4454.	2.9	16
290	Solvatochromatic shifts studied by multi-configuration self-consistent reaction field theory. Application to azabenzenes. Chemical Physics, 1992, 159, 211-225.	0.9	36
291	The XPS core spectral functions of free and physisorbed molecular oxygen. Chemical Physics, 1992, 164, 173-182.	0.9	11
292	A new and rigorous method for calculating intramolecular reorganization energies for electron-transfer reactions: applied for self-exchange reactions involving alkyl and benzyl radicals. The Journal of Physical Chemistry, 1991, 95, 8892-8899.	2.9	25
293	Molecular dynamics simulation of the solvation of benzene anion with different charge distributions: application to self-exchange electron-transfer reactions. The Journal of Physical Chemistry, 1991, 95, 4843-4848.	2.9	2
294	Theory of solvent effects on electronic spectra. Computational and Theoretical Chemistry, 1991, 234, 425-467.	1.5	62
295	A theoretical study of solvent effects on the radiative deactivation of singlet molecular oxygen (1.DELTA.gO2). The Journal of Physical Chemistry, 1990, 94, 6220-6227.	2.9	14
296	Direct and superexchange electron tunneling at the adjacent and remote sites of higher plant plastocyanins. Inorganic Chemistry, 1990, 29, 2808-2816.	1.9	85
297	Dynamical theory of electron transfer: Inclusion of innerâ€shell reorganization. Journal of Chemical Physics, 1989, 90, 4237-4247.	1.2	26
298	Free energy-dependence of the electronic factor in biological long-range electron transfer. Journal of the American Chemical Society, 1989, 111, 1315-1319.	6.6	25
299	Selfâ€consistent reaction field calculations of photoelectron binding energies for solvated molecules. Journal of Chemical Physics, 1989, 90, 6422-6435.	1.2	40
300	Dynamical theory of electron-transfer reactions: bridge-assisted transfer. The Journal of Physical Chemistry, 1989, 93, 1759-1770.	2.9	42
301	On the validity of the equivalent core approximation in Born-Haber analyses of liquids and solutions. Chemical Physics Letters, 1988, 153, 322-327.	1.2	17
302	Specific solvation effects on electron transfer. International Journal of Quantum Chemistry, 1988, 34, 707-720.	1.0	10
303	A multiconfigurational selfâ€consistent reactionâ€field method. Journal of Chemical Physics, 1988, 89, 3086-3095.	1.2	198
304	Electron-transfer reactions in solution: an ab initio approach. The Journal of Physical Chemistry, 1987, 91, 3081-3092.	2.9	112
305	Electron transfer reactions dynamically coupled to a dielectric medium: Orientational effects and bridge assistance. International Journal of Quantum Chemistry, 1987, 32, 341-354.	1.0	20
306	A self-consistent reaction field approach to liquid photoionization. Chemical Physics, 1987, 115, 43-55.	0.9	64

#	Article	IF	CITATIONS
307	Electron tunneling in solid-state electron-transfer reactions. Chemical Reviews, 1987, 87, 113-153.	23.0	327
308	Properties and Spectroscopies. , 0, , 125-312.		3
309	Beyond the Continuum Approach. , 0, , 499-605.		6
310	High throughput virtual screening of 230 billion molecular solar heat battery candidates. PeerJ Physical Chemistry, 0, 3, e16.	0.0	15
311	Working equation of linear response timeâ€dependent density functional theory: Firstâ€order polarization propagator approximation. International Journal of Quantum Chemistry, 0, , .	1.0	2
312	Cluster perturbation theory. VI. Ground-state energy series using the Lagrangian. Journal of Chemical Physics, 0, , .	1.2	9
313	Cluster Perturbation Theory. VII. The convergence of Cluster Perturbation Expansions. Journal of Chemical Physics, 0, , .	1.2	7
314	Cluster perturbation theory. VIII. First order properties for a coupled cluster state. Journal of Chemical Physics, 0, , .	1.2	5