
## Adrian Mark Paterson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9139325/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                      | IF              | CITATIONS    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1  | Developing a future protocol for measuring spider biodiversity in pastures in New Zealand. New Zealand Journal of Zoology, 2023, 50, 305-317.                                                                                                                | 0.6             | 0            |
| 2  | Intraspecific variation in shoot flammability in Dracophyllum rosmarinifolium is not predicted by habitat environmental conditions. Forest Ecosystems, 2022, 9, 100017.                                                                                      | 1.3             | 4            |
| 3  | Niche modelling identifies low rainfall, but not soil type, as an important habitat requirement of the<br>fossorial Australasian trapdoor spider genus Cantuaria (Hogg, 1902). Austral Ecology, 2021, 46, 1070.                                              | 0.7             | 0            |
| 4  | A New Non-invasive Method for Collecting DNA From Small Mammals in the Field, and Its Application in<br>Simultaneous Vector and Disease Monitoring in Brushtail Possums. Frontiers in Environmental<br>Science, 2021, 9, .                                   | 1.5             | 4            |
| 5  | A survey of the oral cavity microbiome of New Zealand fur seal pups ( Arctocephalus forsteri ).<br>Marine Mammal Science, 2020, 36, 334-343.                                                                                                                 | 0.9             | 3            |
| 6  | Oral Microbiome Metabarcoding in Two Invasive Small Mammals from New Zealand. Diversity, 2020, 12, 278.                                                                                                                                                      | 0.7             | 2            |
| 7  | Shootâ€level flammability across the <i>Dracophyllum</i> (Ericaceae) phylogeny: evidence for flammability being an emergent property in a land with little fire. New Phytologist, 2020, 228, 95-105.                                                         | 3.5             | 10           |
| 8  | Shoot flammability of vascular plants is phylogenetically conserved and related to habitat fire-proneness and growth form. Nature Plants, 2020, 6, 355-359.                                                                                                  | 4.7             | 29           |
| 9  | De Novo Transcriptome Assembly and Annotation of Liver and Brain Tissues of Common Brushtail<br>Possums (Trichosurus vulpecula) in New Zealand: Transcriptome Diversity after Decades of<br>Population Control. Genes, 2020, 11, 436.                        | 1.0             | 8            |
| 10 | Mitogenomics data reveal effective population size, historical bottlenecks, and the effects of hunting<br>on New Zealand fur seals ( <i>Arctocephalus forsteri</i> ). Mitochondrial DNA Part A: DNA Mapping,<br>Sequencing, and Analysis, 2018, 29, 567-580. | 0.7             | 12           |
| 11 | The Molecular Phylogeny of the New Zealand Endemic Genus Hadramphus and the Revival of the Genus<br>Karocolens. Diversity, 2018, 10, 88.                                                                                                                     | 0.7             | 1            |
| 12 | Identifying prey items from New Zealand fur seal (Arctocephalus forsteri) faeces using massive parallel sequencing. Conservation Genetics Resources, 2016, 8, 343-352.                                                                                       | 0.4             | 15           |
| 13 | Captive rearing of the endangered weevil <i>Hadramphus tuberculatus</i> (Pascoe, 1877) (Coleoptera:) Tj ETQq1                                                                                                                                                | 1 0.7843<br>0.3 | 14 rgBT /Ove |
| 14 | Geometric morphometrics and molecular systematics of Xanthocnemis sobrina (McLachlan, 1873)<br>(Odonata: Coenagrionidae) and comparison to its congeners. Zootaxa, 2016, 4078, 84-120.                                                                       | 0.2             | 1            |
| 15 | Mitochondrial DNA structure and colony expansion dynamics of New Zealand fur seals<br>(Arctocephalus forsteri) around Banks Peninsula. New Zealand Journal of Zoology, 2016, 43, 322-335.                                                                    | 0.6             | 3            |
| 16 | Complete mitochondrial genome of the stoat (Mustela erminea) and New Zealand fur seal<br>(Arctocephalus forsteri) and their significance for mammalian phylogeny. Mitochondrial DNA Part A:<br>DNA Mapping, Sequencing, and Analysis, 2016, 27, 4597-4599.   | 0.7             | 7            |
| 17 | Carbon dioxide versus cold exposure for immobilising live redback spidersLatrodectus<br>hasseltiiThorell, 1870 (Araneae: Theridiidae). New Zealand Entomologist, 2015, 38, 10-16.                                                                            | 0.3             | 1            |
| 18 | Beetling: A Method for Capturing Trapdoor Spiders (Idiopidae) Using Tethered Beetles. Arachnology,<br>2015, 16, 294-297.                                                                                                                                     | 0.4             | 1            |

| #  | Article                                                                                                                                                                                                             | IF               | CITATIONS                |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
| 19 | The effects of island forest restoration on open habitat specialists: the endangered<br>weevil <i>Hadramphus spinipennis</i> Broun and its host-plant <i>Aciphylla dieffenbachii</i> Kirk. PeerJ,<br>2015, 3, e749. | 0.9              | 2                        |
| 20 | Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity. PeerJ, 2014, 2, e573.                                                                                   | 0.9              | 12                       |
| 21 | Sedentary behaviour and chronic disease. Perspectives in Public Health, 2014, 134, 131-132.                                                                                                                         | 0.8              | 2                        |
| 22 | One-year cardiovascular risk and quality of life changes in participants of a health trainer service.<br>Perspectives in Public Health, 2014, 134, 135-144.                                                         | 0.8              | 8                        |
| 23 | Big and aerial invaders: dominance of exotic spiders in burned New Zealand tussock grasslands.<br>Biological Invasions, 2014, 16, 2311-2322.                                                                        | 1.2              | 16                       |
| 24 | Behavioural evolution in penguins does not reflect phylogeny. Cladistics, 2014, 30, 243-259.                                                                                                                        | 1.5              | 3                        |
| 25 | Abundance of Latrodectus katipo Powell, 1871 is affected by vegetation type and season. Journal of<br>Insect Conservation, 2014, 18, 397-405.                                                                       | 0.8              | 4                        |
| 26 | The role of habitat complexity on spider communities in native alpine grasslands of New Zealand.<br>Insect Conservation and Diversity, 2013, 6, 124-134.                                                            | 1.4              | 70                       |
| 27 | The ecology and conservation of Hadramphus tuberculatus (Pascoe 1877) (Coleoptera: Curculionidae:) Tj ETQq1                                                                                                         | 1 0.78431<br>0.8 | 4 <sub>7</sub> rgBT /Ove |
| 28 | Biogeography Off the Tracks. Systematic Biology, 2013, 62, 494-498.                                                                                                                                                 | 2.7              | 35                       |
| 29 | The founder space race: a response to Waters et al Trends in Ecology and Evolution, 2013, 28, 189-190.                                                                                                              | 4.2              | 10                       |
| 30 | Habitat specificity, dispersal and burning season: Recovery indicators in New Zealand native grassland communities. Biological Conservation, 2013, 160, 140-149.                                                    | 1.9              | 15                       |
| 31 | Unidirectional introgression within the genus Dolomedes (Araneae:Pisauridae) in southern New<br>Zealand. Invertebrate Systematics, 2011, 25, 70.                                                                    | 0.5              | 14                       |
| 32 | Comparative behavioural responses of silvereyes ( <i>Zosterops lateralis</i> ) and European blackbirds<br>( <i>Turdus merula</i> ) to secondary metabolites in grapes. Austral Ecology, 2011, 36, 233-239.          | 0.7              | 3                        |
| 33 | Parasites lost – do invaders miss the boat or drown on arrival?. Ecology Letters, 2010, 13, 516-527.                                                                                                                | 3.0              | 117                      |
| 34 | Late-Cenozoic origin and diversification of Chatham Islands endemic plant species revealed by analyses of DNA sequence data. New Zealand Journal of Botany, 2010, 48, 83-136.                                       | 0.8              | 62                       |
| 35 | Urban cat (Felis catus) movement and predation activity associated with a wetland reserve in New Zealand. Wildlife Research, 2009, 36, 574.                                                                         | 0.7              | 67                       |
| 36 | Phylogenetic relationships ofGeraniumspecies indigenous to New Zealand. New Zealand Journal of<br>Botany, 2009, 47, 21-31.                                                                                          | 0.8              | 12                       |

| #  | Article                                                                                                                                                                                                            | IF                | CITATIONS   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| 37 | Noninvasive recovery and detection of possum <i>Trichosurus vulpecula</i> DNA from bitten bait interference devices (WaxTags). Molecular Ecology Resources, 2009, 9, 505-515.                                      | 2.2               | 6           |
| 38 | Evolution of New Zealand's terrestrial fauna: a review of molecular evidence. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3319-3334.                                     | 1.8               | 114         |
| 39 | Species status and conservation issues of New Zealand's endemic Latrodectus spider species (Araneae :) Tj ETQq1                                                                                                    | 1 0.7843<br>0.5   | 14 rgBT /0) |
| 40 | Few genetic differences between Victorian and Western Australian blue penguins, <i>Eudyptula<br/>minor</i> . New Zealand Journal of Zoology, 2008, 35, 265-270.                                                    | 0.6               | 7           |
| 41 | A preliminary study of the genetic differences in New Zealand oystercatcher species. New Zealand<br>Journal of Zoology, 2007, 34, 141-144.                                                                         | 0.6               | 9           |
| 42 | Cophylogenetic relationships between penguins and their chewing lice. Journal of Evolutionary<br>Biology, 2006, 19, 156-166.                                                                                       | 0.8               | 55          |
| 43 | GUEST EDITORIAL: Hello New Zealand. Journal of Biogeography, 2006, 34, 1-6.                                                                                                                                        | 1.4               | 138         |
| 44 | The great escape: do parasites break Dollo's law?. Trends in Parasitology, 2006, 22, 509-515.                                                                                                                      | 1.5               | 25          |
| 45 | Multi-host parasite species in cophylogenetic studies. International Journal for Parasitology, 2005, 35, 741-746.                                                                                                  | 1.3               | 43          |
| 46 | MOLECULAR INSIGHTS INTO THE BIOGEOGRAPHY AND SPECIES STATUS OF NEW ZEALAND'S ENDEMIC<br>LATRODECTUS SPIDER SPECIES; L. KATIPO AND L. ATRITUS (ARANEAE, THERIDIIDAE). Journal of<br>Arachnology, 2005, 33, 776-784. | 0.3               | 10          |
| 47 | A penguin-chewing louse (Insecta : Phthiraptera) phylogeny derived from morphology. Invertebrate<br>Systematics, 2004, 18, 89.                                                                                     | 0.5               | 10          |
| 48 | Combined molecular and morphological phylogenetic analyses of the New Zealand wolf spider genus<br>Anoteropsis (Araneae: Lycosidae). Molecular Phylogenetics and Evolution, 2003, 28, 576-587.                     | 1.2               | 40          |
| 49 | Phylogenetic revision of the endemic New Zealand carabid genus OregusPutzeys (Coleoptera :) Tj ETQq1 1 0.7843                                                                                                      | 314.rgBT /<br>0.5 | Overlock 10 |
| 50 | A PRELIMINARY MOLECULAR ANALYSIS OF PHYLOGENETIC RELATIONSHIPS OF AUSTRALASIAN WOLF SPIDER GENERA (ARANEAE, LYCOSIDAE). Journal of Arachnology, 2002, 30, 227-237.                                                 | 0.3               | 26          |
| 51 | Analytical approaches to measuring cospeciation of host and parasites: through a glass, darkly.<br>International Journal for Parasitology, 2001, 31, 1012-1022.                                                    | 1.3               | 126         |
| 52 | Phylogenetic relationships within the genus <i>Wiseana</i> (Lepidoptera: Hepialidae). New Zealand<br>Journal of Zoology, 2000, 27, 1-14.                                                                           | 0.6               | 8           |
| 53 | Morphological character evolution in hepialid moths (Lepidoptera: Hepialidae) from New Zealand.<br>Biological Journal of the Linnean Society, 2000, 69, 383-397.                                                   | 0.7               | 6           |
| 54 | Phylogeny of New Zealand hepialid moths (Lepidoptera: Hepialidae) inferred from a cladistic analysis<br>of morphological data. Systematic Entomology, 2000, 25, 1-14.                                              | 1.7               | 17          |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Seabird and Louse Coevolution: Complex Histories Revealed by 12S rRNA Sequences and Reconciliation Analyses. Systematic Biology, 2000, 49, 383-399.                                                                                         | 2.7 | 84        |
| 56 | Influence of Artificial Burrows and Microhabitat on Burrow Competition between Chatham Petrels<br>Pterodroma axillaris and Broad-billed Prions Pachyptila vittata. Emu, 2000, 100, 329-333.                                                 | 0.2 | 9         |
| 57 | Preliminary molecular analysis of <i>Pelecanoides georgicus</i> (Procellariiformes: Pelecanoididae)<br>on Whenua Hou (Codfish Island): Implications for its taxonomic status. New Zealand Journal of<br>Zoology, 2000, 27, 415-423.         | 0.6 | 7         |
| 58 | How Frequently Do Avian Lice Miss the Boat? Implications for Coevolutionary Studies. Systematic Biology, 1999, 48, 214-223.                                                                                                                 | 2.7 | 67        |
| 59 | Origin and relationships of New Zealand chestnut (Castanea sp.Fagaceae) selections reflect patterns<br>of graft failure. Plant Systematics and Evolution, 1999, 218, 193-204.                                                               | 0.3 | 1         |
| 60 | Have chondracanthid copepods co-speciated with their teleost hosts?. Systematic Parasitology, 1999, 44, 79-85.                                                                                                                              | 0.5 | 32        |
| 61 | The Long and Short of It: Branch Lengths and the Problem of Placing the New Zealand Short-Tailed<br>Bat, Mystacina. Molecular Phylogenetics and Evolution, 1999, 13, 405-416.                                                               | 1.2 | 42        |
| 62 | Phylogeny of "Oxycanus―Lineages of Hepialid Moths from New Zealand Inferred from Sequence<br>Variation in the mtDNA COI and II Gene Regions. Molecular Phylogenetics and Evolution, 1999, 13,<br>463-473.                                   | 1.2 | 28        |
| 63 | Comparison of RAPD and morphoâ€nut markers for revealing genetic relationships between chestnut<br>species (Castaneaspp.) and New Zealand chestnut selections. New Zealand Journal of Crop and<br>Horticultural Science, 1998, 26, 109-115. | 0.7 | 11        |
| 64 | Lice and cospeciation: A response to barker. International Journal for Parasitology, 1996, 26, 213-218.                                                                                                                                     | 1.3 | 48        |
| 65 | PENGUINS, PETRELS, AND PARSIMONY: DOES CLADISTIC ANALYSIS OF BEHAVIOR REFLECT SEABIRD PHYLOGENY?. Evolution; International Journal of Organic Evolution, 1995, 49, 974-989.                                                                 | 1.1 | 46        |
| 66 | Penguins, Petrels, and Parsimony: Does Cladistic Analysis of Behavior Reflect Seabird Phylogeny?.<br>Evolution; International Journal of Organic Evolution, 1995, 49, 974.                                                                  | 1.1 | 33        |