Carlos F Ibáñez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9139323/publications.pdf

Version: 2024-02-01

101543 79698 6,309 72 36 73 citations g-index h-index papers 109 109 109 5918 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Regulation of metabolic homeostasis by the TGFâ $\hat{\mathbb{C}}^2$ superfamily receptor ALK7. FEBS Journal, 2022, 289, 5776-5797.	4.7	10
2	Introducing <i>Oxford Open Neuroscience</i> , , 2022, 1, .		0
3	Convergent dopamine and <scp>ALK4</scp> signaling to <scp>PCBP1</scp> controls <scp>FosB</scp> alternative splicing and cocaine behavioral sensitization. EMBO Journal, 2022, 41, .	7.8	5
4	Ageâ€related changes in hippocampalâ€dependent synaptic plasticity and memory mediated by p75 neurotrophin receptor. Aging Cell, 2021, 20, e13305.	6.7	31
5	Sustained antiâ€obesity effects of lifeâ€style change and antiâ€inflammatory interventions after conditional inactivation of the activin receptor ALK7. FASEB Journal, 2021, 35, e21759.	0.5	5
6	Structural basis of NF-κB signaling by the p75 neurotrophin receptor interaction with adaptor protein TRADD through their respective death domains. Journal of Biological Chemistry, 2021, 297, 100916.	3.4	6
7	Inactive variants of death receptor p75 ^{NTR} reduce Alzheimer's neuropathology by interfering with APP internalization. EMBO Journal, 2021, 40, e104450.	7.8	11
8	Adult medial habenula neurons require GDNF receptor GFR $\hat{l}\pm 1$ for synaptic stability and function. PLoS Biology, 2021, 19, e3001350.	5.6	2
9	ALK4 coordinates extracellular and intrinsic signals to regulate development of cortical somatostatin interneurons. Journal of Cell Biology, 2020, 219, .	5. 2	6
10	CD137 negatively affects "browning―of white adipose tissue during cold exposure. Journal of Biological Chemistry, 2020, 295, 2034-2042.	3.4	13
11	RET-independent signaling by GDNF ligands and GFRα receptors. Cell and Tissue Research, 2020, 382, 71-82.	2.9	23
12	Control of brown adipose tissue adaptation to nutrient stress by the activin receptor ALK7. ELife, 2020, 9, .	6.0	10
13	MAG induces apoptosis in cerebellar granule neurons through p75NTR demarcating granule layer/white matter boundary. Cell Death and Disease, 2019, 10, 732.	6.3	14
14	Abnormal <scp>TDP</scp> â€43 function impairs activityâ€dependent <scp>BDNF</scp> secretion, synaptic plasticity, and cognitive behavior through altered Sortilin splicing. EMBO Journal, 2019, 38, .	7.8	28
15	The p75 Neurotrophin Receptor Is an Essential Mediator of Impairments in Hippocampal-Dependent Associative Plasticity and Memory Induced by Sleep Deprivation. Journal of Neuroscience, 2019, 39, 5452-5465.	3. 6	44
16	Death domain of p75 neurotrophin receptor: a structural perspective on an intracellular signalling hub. Biological Reviews, 2019, 94, 1282-1293.	10.4	20
17	Comment on Bu et al. Insulin Regulates Lipolysis and Fat Mass by Upregulating Growth/Differentiation Factor 3 in Adipose Tissue Macrophages. Diabetes 2018;67:1761–1772. Diabetes, 2018, 67, e1-e1.	0.6	2
18	A Small Molecule Targeting the Transmembrane Domain of Death Receptor p75NTR Induces Melanoma Cell Death and Reduces Tumor Growth. Cell Chemical Biology, 2018, 25, 1485-1494.e5.	5.2	20

#	Article	IF	Citations
19	RIP2 Gates TRAF6 Interaction with Death Receptor p75NTR to Regulate Cerebellar Granule Neuron Survival. Cell Reports, 2018, 24, 1013-1024.	6.4	32
20	Cell-autonomous role of GFRÎ ± 1 in the development of olfactory bulb GABAergic interneurons. Biology Open, 2018, 7, .	1.2	5
21	Biology of GDNF and its receptors â€" Relevance for disorders of the central nervous system. Neurobiology of Disease, 2017, 97, 80-89.	4.4	175
22	GFRα1 Regulates Purkinje Cell Migration by Counteracting NCAM Function. Cell Reports, 2017, 18, 367-379.	6.4	30
23	Compromised Survival of Cerebellar Molecular Layer Interneurons Lacking GDNF Receptors GFRα1 or RET Impairs Normal Cerebellar Motor Learning. Cell Reports, 2017, 19, 1977-1986.	6.4	32
24	Death Domain Signaling by Disulfide-Linked Dimers of the p75 Neurotrophin Receptor Mediates Neuronal Death in the CNS. Journal of Neuroscience, 2016, 36, 5587-5595.	3.6	30
25	Thalamo-cortical axons regulate the radial dispersion of neocortical GABAergic interneurons. ELife, 2016, 5, .	6.0	25
26	Structural basis of death domain signaling in the p75 neurotrophin receptor. ELife, 2015, 4, e11692.	6.0	69
27	Neuron-type-specific signaling by the p75NTR death receptor regulated by differential proteolytic cleavage. Journal of Cell Science, 2015, 128, 1507-17.	2.0	42
28	Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially resolved RNA-seq. Genome Biology, 2014, 15, 486.	8.8	29
29	Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially-resolved RNA-seq. Genome Biology, 2014, 15, 486.	9.6	3
30	Adipocyte ALK7 links nutrient overload to catecholamine resistance in obesity. ELife, 2014, 3, e03245.	6.0	65
31	Structure and Physiology of the RET Receptor Tyrosine Kinase. Cold Spring Harbor Perspectives in Biology, 2013, 5, a009134-a009134.	5.5	128
32	Critical Role of $GFR\hat{l}\pm 1$ in the Development and Function of the Main Olfactory System. Journal of Neuroscience, 2012, 32, 17306-17320.	3.6	49
33	Genetic Dissection of Neurotrophin Signaling through the p75 Neurotrophin Receptor. Cell Reports, 2012, 2, 1563-1570.	6.4	56
34	p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends in Neurosciences, 2012, 35, 431-440.	8.6	206
35	Neuroendocrine control of female reproductive function by the activin receptor ALK7. FASEB Journal, 2012, 26, 4966-4976.	0.5	28
36	MET signaling in GABAergic neuronal precursors of the medial ganglionic eminence restricts GDNF activity in cells that express GFRα1 and a new transmembrane receptor partner. Journal of Cell Science, 2011, 124, 2797-2805.	2.0	14

#	Article	IF	CITATIONS
37	Beyond the cell surface: New mechanisms of receptor function. Biochemical and Biophysical Research Communications, 2010, 396, 24-27.	2.1	34
38	Regionalized Loss of Parvalbumin Interneurons in the Cerebral Cortex of Mice with Deficits in GFR $\hat{l}\pm 1$ Signaling. Journal of Neuroscience, 2009, 29, 10695-10705.	3.6	57
39	Activation of the p75 Neurotrophin Receptor through Conformational Rearrangement of Disulphide-Linked Receptor Dimers. Neuron, 2009, 62, 72-83.	8.1	134
40	Catecholaminergic neuron survival: getting hooked on GDNF. Nature Neuroscience, 2008, 11, 735-736.	14.8	16
41	Growth/differentiation factor 3 signals through ALK7 and regulates accumulation of adipose tissue and diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7252-7256.	7.1	116
42	Activin B receptor ALK7 is a negative regulator of pancreatic \hat{l}^2 -cell function. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7246-7251.	7.1	87
43	Insights into GFR $\hat{I}\pm 1$ Regulation of Neural Cell Adhesion Molecule (NCAM) Function from Structure-Function Analysis of the NCAM/GFR $\hat{I}\pm 1$ Receptor Complex. Journal of Biological Chemistry, 2008, 283, 13792-13798.	3.4	18
44	Disruption of the GDNF Binding Site in NCAM Dissociates Ligand Binding and Homophilic Cell Adhesion. Journal of Biological Chemistry, 2007, 282, 12734-12740.	3.4	28
45	Hierarchical Control of Sensory Neuron Development by Neurotrophic Factors. Neuron, 2007, 54, 673-675.	8.1	22
46	GDNF and GFRα1 promote formation of neuronal synapses by ligand-induced cell adhesion. Nature Neuroscience, 2007, 10, 293-300.	14.8	145
47	Message in a bottle: long-range retrograde signaling in the nervous system. Trends in Cell Biology, 2007, 17, 519-528.	7.9	113
48	GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Molecular and Cellular Neurosciences, 2006, 31, 505-514.	2.2	130
49	Synergistic interaction between Gdf1 and Nodal during anterior axis development. Developmental Biology, 2006, 293, 370-381.	2.0	82
50	GDNF and $GFR\hat{l}\pm 1$ Promote Differentiation and Tangential Migration of Cortical GABAergic Neurons. Neuron, 2005, 45, 701-713.	8.1	169
51	ALK7, a Receptor for Nodal, Is Dispensable for Embryogenesis and Left-Right Patterning in the Mouse. Molecular and Cellular Biology, 2004, 24, 9383-9389.	2.3	47
52	Lipid Rafts as Organizing Platforms for Cell Chemotaxis and Axon Guidance. Neuron, 2004, 42, 3-5.	8.1	12
53	The Neural Cell Adhesion Molecule NCAM Is an Alternative Signaling Receptor for GDNF Family Ligands. Cell, 2003, 113, 867-879.	28.9	530
54	Target-Derived GFR $\hat{l}\pm 1$ as an Attractive Guidance Signal for Developing Sensory and Sympathetic Axons via Activation of Cdk5. Neuron, 2002, 36, 387-401.	8.1	107

#	Article	IF	Citations
55	Jekyll–Hyde neurotrophins: the story of proNGF. Trends in Neurosciences, 2002, 25, 284-286.	8.6	115
56	Lipid rafts and the control of neurotrophic factor signaling in the nervous system: variations on a theme. Current Opinion in Neurobiology, 2002, 12, 542-549.	4.2	106
57	Released GFRα1 Potentiates Downstream Signaling, Neuronal Survival, and Differentiation via a Novel Mechanism of Recruitment of c-Ret to Lipid Rafts. Neuron, 2001, 29, 171-184.	8.1	248
58	Structure-activity relationship of the p55 TNF receptor death domain and its lymphoproliferation mutants. FEBS Journal, 2001, 268, 1382-1391.	0.2	5
59	The Orphan Receptor Serine/Threonine Kinase ALK7 Signals Arrest of Proliferation and Morphological Differentiation in a Neuronal Cell Line. Journal of Biological Chemistry, 2001, 276, 5140-5146.	3.4	49
60	The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes and Development, 2001, 15, 2010-2022.	5.9	273
61	Ret-dependent and -independent Mechanisms of Glial Cell Line-derived Neurotrophic Factor Signaling in Neuronal Cells. Journal of Biological Chemistry, 1999, 274, 20885-20894.	3.4	276
62	Novel, testis-specific mRNA transcripts encoding N-terminally truncated choline acetyltransferase. Molecular Reproduction and Development, 1999, 53, 274-281.	2.0	2
63	An ethanol-inducible MDR ethanol dehydrogenase/acetaldehyde reductase in Escherichia coli . Structural and enzymatic relationships to the eukaryotic protein forms. FEBS Journal, 1999, 263, 305-311.	0.2	45
64	Neurotrophinâ€7: a novel member of the neurotrophin family from the zebrafish. FEBS Letters, 1998, 424, 285-290.	2.8	105
65	Multiple GPI-Anchored Receptors Control GDNF-Dependent and Independent Activation of the c-Ret Receptor Tyrosine Kinase. Molecular and Cellular Neurosciences, 1998, 11, 47-63.	2.2	172
66	On the role of the low-affinity neurotrophin receptor p75LNTR in nerve growth factor induction of differentiation and AP 1 binding activity in PC12 cells. Journal of Molecular Neuroscience, 1997, 8, 29-44.	2.3	9
67	Complementary and Overlapping Expression of Glial Cell Line-Derived Neurotrophic Factor (GDNF), c-ret Proto-Oncogene, and GDNF Receptor-α Indicates Multiple Mechanisms of Trophic Actions in the Adult Rat CNS. Journal of Neuroscience, 1997, 17, 3554-3567.	3.6	443
68	Neurotrophin-4: The odd one out in the neurotrophin family. Neurochemical Research, 1996, 21, 787-793.	3.3	67
69	Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature, 1996, 381, 785-789.	27.8	785
70	A Novel Type I Receptor Serine-Threonine Kinase Predominantly Expressed in the Adult Central Nervous System. Journal of Biological Chemistry, 1996, 271, 30603-30609.	3.4	68
71	GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron, 1995, 15, 1465-1473.	8.1	337
72	Structure–function relationships in the neurotrophin family. Journal of Neurobiology, 1994, 25, 1349-1361.	3.6	78