
Carlos F Ibáñez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9139323/publications.pdf Version: 2024-02-01

CADLOS FIRÃ:Ã+EZ

#	Article	IF	CITATIONS
1	Functional receptor for GDNF encoded by the c-ret proto-oncogene. Nature, 1996, 381, 785-789.	27.8	785
2	The Neural Cell Adhesion Molecule NCAM Is an Alternative Signaling Receptor for GDNF Family Ligands. Cell, 2003, 113, 867-879.	28.9	530
3	Complementary and Overlapping Expression of Glial Cell Line-Derived Neurotrophic Factor (GDNF), c-ret Proto-Oncogene, and GDNF Receptor-α Indicates Multiple Mechanisms of Trophic Actions in the Adult Rat CNS. Journal of Neuroscience, 1997, 17, 3554-3567.	3.6	443
4	GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron, 1995, 15, 1465-1473.	8.1	337
5	Ret-dependent and -independent Mechanisms of Glial Cell Line-derived Neurotrophic Factor Signaling in Neuronal Cells. Journal of Biological Chemistry, 1999, 274, 20885-20894.	3.4	276
6	The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes and Development, 2001, 15, 2010-2022.	5.9	273
7	Released GFRα1 Potentiates Downstream Signaling, Neuronal Survival, and Differentiation via a Novel Mechanism of Recruitment of c-Ret to Lipid Rafts. Neuron, 2001, 29, 171-184.	8.1	248
8	p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends in Neurosciences, 2012, 35, 431-440.	8.6	206
9	Biology of GDNF and its receptors — Relevance for disorders of the central nervous system. Neurobiology of Disease, 2017, 97, 80-89.	4.4	175
10	Multiple GPI-Anchored Receptors Control GDNF-Dependent and Independent Activation of the c-Ret Receptor Tyrosine Kinase. Molecular and Cellular Neurosciences, 1998, 11, 47-63.	2.2	172
11	GDNF and GFRα1 Promote Differentiation and Tangential Migration of Cortical GABAergic Neurons. Neuron, 2005, 45, 701-713.	8.1	169
12	GDNF and GFRα1 promote formation of neuronal synapses by ligand-induced cell adhesion. Nature Neuroscience, 2007, 10, 293-300.	14.8	145
13	Activation of the p75 Neurotrophin Receptor through Conformational Rearrangement of Disulphide-Linked Receptor Dimers. Neuron, 2009, 62, 72-83.	8.1	134
14	GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Molecular and Cellular Neurosciences, 2006, 31, 505-514.	2.2	130
15	Structure and Physiology of the RET Receptor Tyrosine Kinase. Cold Spring Harbor Perspectives in Biology, 2013, 5, a009134-a009134.	5.5	128
16	Growth/differentiation factor 3 signals through ALK7 and regulates accumulation of adipose tissue and diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7252-7256.	7.1	116
17	Jekyll–Hyde neurotrophins: the story of proNGF. Trends in Neurosciences, 2002, 25, 284-286.	8.6	115
18	Message in a bottle: long-range retrograde signaling in the nervous system. Trends in Cell Biology, 2007, 17, 519-528.	7.9	113

Carlos F IbÃiñez

#	Article	IF	CITATIONS
19	Target-Derived GFRα1 as an Attractive Guidance Signal for Developing Sensory and Sympathetic Axons via Activation of Cdk5. Neuron, 2002, 36, 387-401.	8.1	107
20	Lipid rafts and the control of neurotrophic factor signaling in the nervous system: variations on a theme. Current Opinion in Neurobiology, 2002, 12, 542-549.	4.2	106
21	Neurotrophinâ€7: a novel member of the neurotrophin family from the zebrafish. FEBS Letters, 1998, 424, 285-290.	2.8	105
22	Activin B receptor ALK7 is a negative regulator of pancreatic β-cell function. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7246-7251.	7.1	87
23	Synergistic interaction between Gdf1 and Nodal during anterior axis development. Developmental Biology, 2006, 293, 370-381.	2.0	82
24	Structure–function relationships in the neurotrophin family. Journal of Neurobiology, 1994, 25, 1349-1361.	3.6	78
25	Structural basis of death domain signaling in the p75 neurotrophin receptor. ELife, 2015, 4, e11692.	6.0	69
26	A Novel Type I Receptor Serine-Threonine Kinase Predominantly Expressed in the Adult Central Nervous System. Journal of Biological Chemistry, 1996, 271, 30603-30609.	3.4	68
27	Neurotrophin-4: The odd one out in the neurotrophin family. Neurochemical Research, 1996, 21, 787-793.	3.3	67
28	Adipocyte ALK7 links nutrient overload to catecholamine resistance in obesity. ELife, 2014, 3, e03245.	6.0	65
29	Regionalized Loss of Parvalbumin Interneurons in the Cerebral Cortex of Mice with Deficits in GFRα1 Signaling. Journal of Neuroscience, 2009, 29, 10695-10705.	3.6	57
30	Genetic Dissection of Neurotrophin Signaling through the p75 Neurotrophin Receptor. Cell Reports, 2012, 2, 1563-1570.	6.4	56
31	The Orphan Receptor Serine/Threonine Kinase ALK7 Signals Arrest of Proliferation and Morphological Differentiation in a Neuronal Cell Line. Journal of Biological Chemistry, 2001, 276, 5140-5146.	3.4	49
32	Critical Role of GFRα1 in the Development and Function of the Main Olfactory System. Journal of Neuroscience, 2012, 32, 17306-17320.	3.6	49
33	ALK7, a Receptor for Nodal, Is Dispensable for Embryogenesis and Left-Right Patterning in the Mouse. Molecular and Cellular Biology, 2004, 24, 9383-9389.	2.3	47
34	An ethanol-inducible MDR ethanol dehydrogenase/acetaldehyde reductase in Escherichia coli . Structural and enzymatic relationships to the eukaryotic protein forms. FEBS Journal, 1999, 263, 305-311.	0.2	45
35	The p75 Neurotrophin Receptor Is an Essential Mediator of Impairments in Hippocampal-Dependent Associative Plasticity and Memory Induced by Sleep Deprivation. Journal of Neuroscience, 2019, 39, 5452-5465.	3.6	44
36	Neuron-type-specific signaling by the p75NTR death receptor regulated by differential proteolytic cleavage. Journal of Cell Science, 2015, 128, 1507-17.	2.0	42

Carlos F IbÃiñez

#	Article	IF	CITATIONS
37	Beyond the cell surface: New mechanisms of receptor function. Biochemical and Biophysical Research Communications, 2010, 396, 24-27.	2.1	34
38	Compromised Survival of Cerebellar Molecular Layer Interneurons Lacking GDNF Receptors GFRα1 or RET Impairs Normal Cerebellar Motor Learning. Cell Reports, 2017, 19, 1977-1986.	6.4	32
39	RIP2 Gates TRAF6 Interaction with Death Receptor p75NTR to Regulate Cerebellar Granule Neuron Survival. Cell Reports, 2018, 24, 1013-1024.	6.4	32
40	Ageâ€related changes in hippocampalâ€dependent synaptic plasticity and memory mediated by p75 neurotrophin receptor. Aging Cell, 2021, 20, e13305.	6.7	31
41	Death Domain Signaling by Disulfide-Linked Dimers of the p75 Neurotrophin Receptor Mediates Neuronal Death in the CNS. Journal of Neuroscience, 2016, 36, 5587-5595.	3.6	30
42	GFRα1 Regulates Purkinje Cell Migration by Counteracting NCAM Function. Cell Reports, 2017, 18, 367-379.	6.4	30
43	Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially resolved RNA-seq. Genome Biology, 2014, 15, 486.	8.8	29
44	Disruption of the GDNF Binding Site in NCAM Dissociates Ligand Binding and Homophilic Cell Adhesion. Journal of Biological Chemistry, 2007, 282, 12734-12740.	3.4	28
45	Neuroendocrine control of female reproductive function by the activin receptor ALK7. FASEB Journal, 2012, 26, 4966-4976.	0.5	28
46	Abnormal <scp>TDP</scp> â€43 function impairs activityâ€dependent <scp>BDNF</scp> secretion, synaptic plasticity, and cognitive behavior through altered Sortilin splicing. EMBO Journal, 2019, 38, .	7.8	28
47	Thalamo-cortical axons regulate the radial dispersion of neocortical GABAergic interneurons. ELife, 2016, 5, .	6.0	25
48	RET-independent signaling by GDNF ligands and GFRα receptors. Cell and Tissue Research, 2020, 382, 71-82.	2.9	23
49	Hierarchical Control of Sensory Neuron Development by Neurotrophic Factors. Neuron, 2007, 54, 673-675.	8.1	22
50	A Small Molecule Targeting the Transmembrane Domain of Death Receptor p75NTR Induces Melanoma Cell Death and Reduces Tumor Growth. Cell Chemical Biology, 2018, 25, 1485-1494.e5.	5.2	20
51	Death domain of p75 neurotrophin receptor: a structural perspective on an intracellular signalling hub. Biological Reviews, 2019, 94, 1282-1293.	10.4	20
52	Insights into GFRα1 Regulation of Neural Cell Adhesion Molecule (NCAM) Function from Structure-Function Analysis of the NCAM/GFRα1 Receptor Complex. Journal of Biological Chemistry, 2008, 283, 13792-13798.	3.4	18
53	Catecholaminergic neuron survival: getting hooked on GDNF. Nature Neuroscience, 2008, 11, 735-736.	14.8	16
54	MET signaling in GABAergic neuronal precursors of the medial ganglionic eminence restricts GDNF activity in cells that express GFRα1 and a new transmembrane receptor partner. Journal of Cell Science, 2011, 124, 2797-2805.	2.0	14

Carlos F IbÃiñez

#	Article	IF	CITATIONS
55	MAG induces apoptosis in cerebellar granule neurons through p75NTR demarcating granule layer/white matter boundary. Cell Death and Disease, 2019, 10, 732.	6.3	14
56	CD137 negatively affects "browning―of white adipose tissue during cold exposure. Journal of Biological Chemistry, 2020, 295, 2034-2042.	3.4	13
57	Lipid Rafts as Organizing Platforms for Cell Chemotaxis and Axon Guidance. Neuron, 2004, 42, 3-5.	8.1	12
58	Inactive variants of death receptor p75 ^{NTR} reduce Alzheimer's neuropathology by interfering with APP internalization. EMBO Journal, 2021, 40, e104450.	7.8	11
59	Regulation of metabolic homeostasis by the TGFâ€Î² superfamily receptor ALK7. FEBS Journal, 2022, 289, 5776-5797.	4.7	10
60	Control of brown adipose tissue adaptation to nutrient stress by the activin receptor ALK7. ELife, 2020, 9, .	6.0	10
61	On the role of the low-affinity neurotrophin receptor p75LNTR in nerve growth factor induction of differentiation and AP 1 binding activity in PC12 cells. Journal of Molecular Neuroscience, 1997, 8, 29-44.	2.3	9
62	ALK4 coordinates extracellular and intrinsic signals to regulate development of cortical somatostatin interneurons. Journal of Cell Biology, 2020, 219, .	5.2	6
63	Structural basis of NF-κB signaling by the p75 neurotrophin receptor interaction with adaptor protein TRADD through their respective death domains. Journal of Biological Chemistry, 2021, 297, 100916.	3.4	6
64	Structure-activity relationship of the p55 TNF receptor death domain and its lymphoproliferation mutants. FEBS Journal, 2001, 268, 1382-1391.	0.2	5
65	Cell-autonomous role of GFRα1 in the development of olfactory bulb GABAergic interneurons. Biology Open, 2018, 7, .	1.2	5
66	Sustained antiâ€obesity effects of lifeâ€style change and antiâ€inflammatory interventions after conditional inactivation of the activin receptor ALK7. FASEB Journal, 2021, 35, e21759.	0.5	5
67	Convergent dopamine and <scp>ALK4</scp> signaling to <scp>PCBP1</scp> controls <scp>FosB</scp> alternative splicing and cocaine behavioral sensitization. EMBO Journal, 2022, 41, .	7.8	5
68	Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially-resolved RNA-seq. Genome Biology, 2014, 15, 486.	9.6	3
69	Novel, testis-specific mRNA transcripts encoding N-terminally truncated choline acetyltransferase. Molecular Reproduction and Development, 1999, 53, 274-281.	2.0	2
70	Comment on Bu et al. Insulin Regulates Lipolysis and Fat Mass by Upregulating Growth/Differentiation Factor 3 in Adipose Tissue Macrophages. Diabetes 2018;67:1761–1772. Diabetes, 2018, 67, e1-e1.	0.6	2
71	Adult medial habenula neurons require GDNF receptor GFRα1 for synaptic stability and function. PLoS Biology, 2021, 19, e3001350.	5.6	2
72	Introducing <i>Oxford Open Neuroscience</i> ., 2022, 1, .		0

72 Introducing <i>Oxford Open Neuroscience</i>., 2022, 1, .