
Chun-Shiang Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9139099/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6303-6308.	3.3	429
2	Regulatory T cell populations in sepsis and trauma. Journal of Leukocyte Biology, 2008, 83, 523-535.	1.5	185
3	Shock-Induced Neutrophil Mediated Priming for Acute Lung Injury in Mice. American Journal of Pathology, 2002, 161, 2283-2294.	1.9	139
4	Pathogenesis of indirect (secondary) acute lung injury. Expert Review of Respiratory Medicine, 2011, 5, 115-126.	1.0	139
5	Role of alveolar macrophage and migrating neutrophils in hemorrhage-induced priming for ALI subsequent to septic challenge. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L51-L58.	1.3	124
6	Cl-Amidine Prevents Histone 3 Citrullination and Neutrophil Extracellular Trap Formation, and Improves Survival in a Murine Sepsis Model. Journal of Innate Immunity, 2017, 9, 22-32.	1.8	118
7	In vivo gene silencing (with siRNA) of pulmonary expression of MIP-2 versus KC results in divergent effects on hemorrhage-induced, neutrophil-mediated septic acute lung injury. Journal of Leukocyte Biology, 2005, 77, 846-853.	1.5	112
8	SHOCK AND HEMORRHAGE: AN OVERVIEW OF ANIMAL MODELS. Shock, 2005, 24, 33-39.	1.0	104
9	Epithelial Cell Apoptosis and Neutrophil Recruitment in Acute Lung Injury—A Unifying Hypothesis? What We Have Learned from Small Interfering RNAs. Molecular Medicine, 2008, 14, 465-475.	1.9	95
10	PAD4 Deficiency Leads to Decreased Organ Dysfunction and Improved Survival in a Dual Insult Model of Hemorrhagic Shock and Sepsis. Journal of Immunology, 2018, 200, 1817-1828.	0.4	78
11	CXCR2 inhibition suppresses hemorrhage-induced priming for acute lung injury in mice. Journal of Leukocyte Biology, 2004, 76, 58-64.	1.5	70
12	Lymphocytes in the Development of Lung Inflammation: A Role for Regulatory CD4+ T Cells in Indirect Pulmonary Lung Injury. Journal of Immunology, 2009, 183, 3472-3480.	0.4	67
13	Differential Effects of Macrophage Inflammatory Chemokine-2 and Keratinocyte-Derived Chemokine on Hemorrhage-Induced Neutrophil Priming for Lung Inflammation: Assessment by Adoptive Cells Transfer in Mice. Shock, 2003, 19, 358-365.	1.0	66
14	Identification of B7-H1 as a Novel Mediator of the Innate Immune/Proinflammatory Response as well as a Possible Myeloid Cell Prognostic Biomarker in Sepsis. Journal of Immunology, 2014, 192, 1091-1099.	0.4	55
15	Deficiency of γδT lymphocytes contributes to mortality and immunosuppression in sepsis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1338-R1343.	0.9	53
16	The Role of Hepatic Invariant NKT Cells in Systemic/Local Inflammation and Mortality during Polymicrobial Septic Shock. Journal of Immunology, 2009, 182, 2467-2475.	0.4	50
17	Mechanisms of Indirect Acute Lung Injury. Annals of Surgery, 2012, 255, 158-164.	2.1	47
18	CD8+ T Cells Promote Inflammation and Apoptosis in the Liver after Sepsis. American Journal of Pathology, 2007, 171, 87-96.	1.9	46

CHUN-SHIANG CHUNG

#	Article	IF	CITATIONS
19	Kupffer cells potentiate liver sinusoidal endothelial cell injury in sepsis by ligating programmed cell death ligand-1. Journal of Leukocyte Biology, 2013, 94, 963-970.	1.5	46
20	Therapeutic accessibility of caspase-mediated cell death as a key pathomechanism in indirect acute lung injury*. Critical Care Medicine, 2010, 38, 1179-1186.	0.4	43
21	Neutrophil–Endothelial Interactions Mediate Angiopoietin-2–Associated Pulmonary Endothelial Cell Dysfunction in Indirect Acute Lung Injury in Mice. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 193-200.	1.4	40
22	The Role and Source of Tumor Necrosis Factor-α in Hemorrhage-Induced Priming for Septic Lung Injury. Shock, 2012, 37, 611-620.	1.0	35
23	Kupffer Cells Protect Liver Sinusoidal Endothelial Cells from Fas-Dependent Apoptosis in Sepsis by Down-Regulating gp130. American Journal of Pathology, 2013, 182, 742-754.	1.9	35
24	TAT-SNAP-23 treatment inhibits the priming of neutrophil functions contributing to shock and/or sepsis-induced extra-pulmonary acute lung injury. Innate Immunity, 2015, 21, 42-54.	1.1	34
25	Novel Role for PD-1:PD-L1 as Mediator of Pulmonary Vascular Endothelial Cell Functions in Pathogenesis of Indirect ARDS in Mice. Frontiers in Immunology, 2018, 9, 3030.	2.2	31
26	Programmed Cell Death Receptor Ligand 1 Modulates the Regulatory T Cells' Capacity to Repress Shock/Sepsis–Induced Indirect Acute Lung Injury by Recruiting Phosphatase Src Homology Region 2 Domain-Containing Phosphatase 1. Shock, 2015, 43, 47-54.	1.0	30
27	Enhanced Innate Inflammation Induced by Anti-BTLA Antibody in Dual Insult Model of Hemorrhagic Shock/Sepsis. Shock, 2016, 45, 40-49.	1.0	29
28	A Novel Role for Programmed Cell Death Receptor Ligand-1 in Sepsis-Induced Intestinal Dysfunction. Molecular Medicine, 2016, 22, 830-840.	1.9	25
29	A novel role for coinhibitory receptors/checkpoint proteins in the immunopathology of sepsis. Journal of Leukocyte Biology, 2018, 103, 1151-1164.	1.5	25
30	SOCS-1 is a central mediator of steroid-increased thymocyte apoptosis and decreased survival following sepsis. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 1143-1153.	2.2	22
31	DEFICIENCY OF BID PROTEIN REDUCES SEPSIS-INDUCED APOPTOSIS AND INFLAMMATION, WHILE IMPROVING SEPTIC SURVIVAL. Shock, 2010, 34, 150-161.	1.0	22
32	Inflammatory Mechanisms in Sepsis. Shock, 2013, 40, 122-128.	1.0	22
33	Novel Peptide-Based PD1 Immunomodulators Demonstrate Efficacy in Infectious Disease Vaccines and Therapeutics. Frontiers in Immunology, 2020, 11, 264.	2.2	22
34	Blockade of endothelial, but not epithelial, cell expression of PD-L1 following severe shock attenuates the development of indirect acute lung injury in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L801-L812.	1.3	22
35	Contribution of programmed cell death receptor (PD)-1 to Kupffer cell dysfunction in murine polymicrobial sepsis. American Journal of Physiology - Renal Physiology, 2016, 311, G237-G245.	1.6	21
36	Divergent roles of murine neutrophil chemokines in hemorrhage induced priming for acute lung injury. Cytokine, 2005, 31, 169-179.	1.4	19

CHUN-SHIANG CHUNG

#	Article	IF	CITATIONS
37	A divergent response of innate regulatory T-cells to sepsis in humans: Circulating invariant natural killer T-cells are preserved. Human Immunology, 2014, 75, 277-282.	1.2	19
38	Group 2 Innate Lymphoid Cells (ILC2s) Are Key Mediators of the Inflammatory Response in Polymicrobial Sepsis. American Journal of Pathology, 2018, 188, 2097-2108.	1.9	17
39	A Peptide-Based Checkpoint Immunomodulator Alleviates Immune Dysfunction in Murine Polymicrobial Sepsis. Shock, 2021, 55, 806-815.	1.0	15
40	Local Tissue Expression of the Cell Death Ligand, Fas Ligand, Plays a Central Role in the Development of Extrapulmonary Acute Lung Injury. Shock, 2011, 36, 138-143.	1.0	14
41	Effect of PD-1. Shock, 2016, 45, 534-539.	1.0	14
42	Herpes Virus Entry Mediator (HVEM) Expression Promotes Inflammation/ Organ Injury in Response to Experimental Indirect-Acute Lung Injury. Shock, 2019, 51, 487-494.	1.0	12
43	SHP2 inhibitor PHPS1 ameliorates acute kidney injury by Erk1/2-STAT3 signaling in a combined murine hemorrhage followed by septic challenge model. Molecular Medicine, 2020, 26, 89.	1.9	10
44	Negative Immune Checkpoint Protein, VISTA, Regulates the CD4+ Treg Population During Sepsis Progression to Promote Acute Sepsis Recovery and Survival. Frontiers in Immunology, 2022, 13, 861670.	2.2	9
45	A novel role for programmed cell death receptor ligand 2 in sepsis-induced hepatic dysfunction. American Journal of Physiology - Renal Physiology, 2019, 316, G106-G114.	1.6	7
46	Survival and Pulmonary Injury After Neonatal Sepsis: PD1/PDL1's Contributions to Mouse and Human Immunopathology. Frontiers in Immunology, 2021, 12, 634529.	2.2	7
47	Hemorrhage Attenuates Neutrophil Recruitment in Response to Secondary Respiratory Infection by Pseudomonas Aeruginosa. Shock, 2019, 52, 506-512.	1.0	4
48	Chitotriosidase Activity Is Counterproductive in a Mouse Model of Systemic Candidiasis. Frontiers in Immunology, 2021, 12, 626798.	2.2	3
49	Endothelial Not Epithelialâ€Cell Expression of TNFâ€Î± is Critical for the Development of Shock Induced Acute Lung Injury (ALI): IT vs. IV. FASEB Journal, 2008, 22, 47.12.	0.2	2
50	Patho-Mechanisms for Hemorrhage/Sepsis-Induced Indirect Acute Respiratory Distress Syndrome: A Role for Lung TIE1 and Its Regulation by Neutrophils. Shock, 2022, 57, 608-615.	1.0	2
51	Unmasking Unique Immune Altering Aspects of the Microbiome as a Tool to Correct Sepsis-Induced Immune Dysfunction. Surgical Infections, 2021, 22, 400-408.	0.7	1
52	PDâ€l deficiency protects mice from the lethality of sepsis by balancing efficient pathogen clearance and inflammatory cytokine production. FASEB Journal, 2008, 22, 675.23.	0.2	1
53	Septic Immune/Organ Injury: Did They Commit Suicide or Were They Murdered?. FASEB Journal, 2006, 20, A1.	0.2	0
54	Anergy in Septic Patients: Correlating the Increased Percentage of Circulating CD4+CD25+CD127â€Regulatory T Cells with a Decline in Lymphocyte Proliferation. FASEB Journal, 2008, 22, 848.9.	0.2	0

#	Article	IF	CITATIONS
55	Suppressor of cytokine signaling (SOCS)â€1 but not SOCSâ€3 inhibits MCPâ€1 production in mouse lung epithelial cells. FASEB Journal, 2008, 22, 1120.6.	0.2	Ο
56	Dendritic cells as antiâ€inflammatory regulators of extraâ€pulmonary acute lung injury. FASEB Journal, 2008, 22, 672.2.	0.2	0
57	Suppression of Angiopoietinâ€2 using in vivo siRNA following hemorrhagic shock ameliorates acute lung injury in murine shock/sepsis model. FASEB Journal, 2009, 23, 439.3.	0.2	Ο
58	RIP1 and Inflammation Mediated Septic Liver Injury. FASEB Journal, 2009, 23, 571.3.	0.2	0
59	Kupffer cells potentiate the risk for liver sinusoidal endothelial cell injury in sepsis through programmed cell death receptorâ€l ligation. FASEB Journal, 2013, 27, 379.8.	0.2	Ο
60	PMN Depletion Alters Angâ€1:Angâ€2 & Increases Tie2 Phosphorylation Following Hemorrhagic Shock Priming for the Development of iARDS in Mice. FASEB Journal, 2015, 29, 634.5.	0.2	0