List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9138624/publications.pdf Version: 2024-02-01



IODDI DIRAS

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Covalent Mechanochemistry: Theoretical Concepts and Computational Tools with Applications to<br>Molecular Nanomechanics. Chemical Reviews, 2012, 112, 5412-5487.                                                                                 | 23.0 | 346       |
| 2  | Understanding Covalent Mechanochemistry. Angewandte Chemie - International Edition, 2009, 48, 4190-4193.                                                                                                                                         | 7.2  | 231       |
| 3  | Theoretical Study of Alkyl-ï€ and Aryl-ï€ Interactions. Reconciling Theory and Experiment. Journal of<br>Organic Chemistry, 2002, 67, 7057-7065.                                                                                                 | 1.7  | 119       |
| 4  | Mechanochemical Transduction of Externally Applied Forces to Mechanophores. Journal of the American Chemical Society, 2010, 132, 10609-10614.                                                                                                    | 6.6  | 98        |
| 5  | Structures with Tunable Strong Ferromagnetic Coupling: from Unordered (1D) to Ordered (Discrete).<br>Chemistry - A European Journal, 2007, 13, 9924-9930.                                                                                        | 1.7  | 87        |
| 6  | The Janus-faced role of external forces in mechanochemical disulfide bond cleavage. Nature Chemistry, 2013, 5, 685-691.                                                                                                                          | 6.6  | 82        |
| 7  | Self-Assembly of an Azido-Bridged [Ni <sup>II</sup> <sub>6</sub> ] Cluster Featuring Four Fused<br>Defective Cubanes. Inorganic Chemistry, 2008, 47, 3465-3467.                                                                                  | 1.9  | 71        |
| 8  | A Versatile Series of Nickel(II) Complexes Derived from Tetradentate Imine/Pyridyl Ligands and Various<br>Pseudohalides: Azide and Cyanate Compared. Inorganic Chemistry, 2008, 47, 4109-4117.                                                   | 1.9  | 66        |
| 9  | Substituted m-phenylene bridges as strong ferromagnetic couplers for Cuii–bridge–Cuii magnetic<br>interactions: new perspectives. Chemical Communications, 2005, , 5172.                                                                         | 2.2  | 65        |
| 10 | Self-Assembly of Culland Nill[2 × 2] Grid Complexes and a Binuclear CullComplex with a New<br>Semiflexible Substituted Pyrazine Ligand:Â Multiple Anion Encapsulation and Magnetic Properties.<br>Inorganic Chemistry, 2004, 43, 1021-1030.      | 1.9  | 64        |
| 11 | Unexpected mechanochemical complexity in the mechanistic scenarios of disulfide bond reduction in alkaline solution. Nature Chemistry, 2017, 9, 164-170.                                                                                         | 6.6  | 60        |
| 12 | Direct versus Mediated Through-Space Magnetic Interactions: A First Principles, Bottom-Up<br>Reinvestigation of the Magnetism of the Pyridyl-Verdazyl:Hydroquinone Molecular Co-Crystal.<br>Chemistry - A European Journal, 2006, 12, 3995-4005. | 1.7  | 59        |
| 13 | Insights into the crystal-packing effects on the spin crossover of<br>[Fe <sup>II</sup> (1-bpp)] <sup>2+</sup> -based materials. Physical Chemistry Chemical Physics, 2014, 16,<br>27012-27024.                                                  | 1.3  | 57        |
| 14 | On the role of polymer chains in transducing external mechanical forces to benzocyclobutene mechanophores. Journal of Materials Chemistry, 2011, 21, 8309.                                                                                       | 6.7  | 55        |
| 15 | The key role of vibrational entropy in the phase transitions of dithiazolyl-based bistable magnetic materials. Nature Communications, 2014, 5, 4411.                                                                                             | 5.8  | 55        |
| 16 | Towards an accurate and computationally-efficient modelling of Fe( <scp>ii</scp> )-based spin<br>crossover materials. Physical Chemistry Chemical Physics, 2015, 17, 16306-16314.                                                                | 1.3  | 53        |
| 17 | Preparation and Structure of Three Solvatomorphs of the Polymer<br>[Co(dbm) <sub>2</sub> (4ptz)] <i><sub>n</sub></i> :  Spin Canting Depending on the Supramolecular<br>Organization. Inorganic Chemistry, 2007, 46, 7154-7162.                  | 1.9  | 50        |
| 18 | Toward the Control of the Magnetic Anisotropy of FellCubes:Â A DFT Study. Journal of the American<br>Chemical Society, 2006, 128, 9497-9505.                                                                                                     | 6.6  | 47        |

| #  | Article                                                                                                                                                                                                                                                            | IF        | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 19 | Unravelling the Mechanism of Forceâ€Induced Ringâ€Opening of Benzocyclobutenes. Chemistry - A<br>European Journal, 2009, 15, 13331-13335.                                                                                                                          | 1.7       | 47        |
| 20 | Forceâ€Transformed Freeâ€Energy Surfaces and Trajectoryâ€Shooting Simulations Reveal the<br>Mechanoâ€Stereochemistry of Cyclopropane Ringâ€Opening Reactions. Angewandte Chemie - International<br>Edition, 2011, 50, 7105-7108.                                   | 7.2       | 44        |
| 21 | Designed Topology and Siteâ€Selective Metal Composition in Tetranuclear [MM′â‹â‹â‹M′M] Linear Co<br>Chemistry - A European Journal, 2009, 15, 11235-11243.                                                                                                         | omplexes. | 41        |
| 22 | The mechanism for the reversible oxygen addition to heme. A theoretical CASPT2 study. Chemical Communications, 2007, , 3160.                                                                                                                                       | 2.2       | 40        |
| 23 | A new tetrameric Cullcluster with square topology exhibiting ferro- and antiferromagnetic magnetic pathways : which is which?. Chemical Communications, 2004, , 1102-1103.                                                                                         | 2.2       | 38        |
| 24 | On the zerothâ€order hamiltonian for <scp>CASPT</scp> 2 calculations of spin crossover compounds.<br>Journal of Computational Chemistry, 2016, 37, 947-953.                                                                                                        | 1.5       | 36        |
| 25 | Lattice-Solvent Effects in the Spin-Crossover of an Fe(II)-Based Material. The Key Role of<br>Intermolecular Interactions between Solvent Molecules. Inorganic Chemistry, 2017, 56, 4474-4483.                                                                     | 1.9       | 36        |
| 26 | Strong through-space two-halide magnetic exchange of â^'234 K in (2,5-dimethylpyrazine)copper(ii)<br>bromide. Chemical Communications, 2009, , 1359.                                                                                                               | 2.2       | 35        |
| 27 | Density-functional study of two Fe4-based single-molecule magnets. Journal of Chemical Physics, 2005, 123, 044303.                                                                                                                                                 | 1.2       | 34        |
| 28 | Structure and Magnetic Interactions in the Organic-Based Ferromagnet Decamethylferrocenium<br>Tetracyanoethenide, [FeCp*2]•+[TCNE]•â^'. Inorganic Chemistry, 2009, 48, 3296-3307.                                                                                  | 1.9       | 34        |
| 29 | Dynamical effects on the magnetic properties of dithiazolyl bistable materials. Chemical Science, 2015, 6, 2371-2381.                                                                                                                                              | 3.7       | 34        |
| 30 | Analysis of the magneto-structural correlations in the meso-tetraphenylporphyrinatomanganese(iii)<br>tetracyanoethenide family of molecule-based magnets. Journal of Materials Chemistry, 2006, 16,<br>2600-2611.                                                  | 6.7       | 33        |
| 31 | A Heterometallic (Ni <sup>II</sup> –Cu <sup>II</sup> ) Decanuclear Cluster Containing Two Distorted<br>Cubane-like Pentanuclear Cores: Synthesis, Structure, and Magnetic Properties. Inorganic Chemistry,<br>2012, 51, 6440-6442.                                 | 1.9       | 32        |
| 32 | Thermal spin crossover in Fe( <scp>ii</scp> ) and Fe( <scp>iii</scp> ). Accurate spin state energetics at the solid state. Physical Chemistry Chemical Physics, 2020, 22, 4938-4945.                                                                               | 1.3       | 32        |
| 33 | A novel [Cull4] cluster from the assembly of two [Cull2L]+units by a central µ4-1,1,2,2 perchlorate<br>ligand. Dalton Transactions, 2008, , 861-864.                                                                                                               | 1.6       | 31        |
| 34 | A 3D Cu <sup>II</sup> Coordination Framework with μ <sub>4</sub> -/μ <sub>2</sub> -Oxalato Anions and a<br>Bent Dipyridyl Coligand: Unique Zeolite-Type NiP <sub>2</sub> Topological Network and Magnetic<br>Properties. Inorganic Chemistry, 2011, 50, 6850-6852. | 1.9       | 31        |
| 35 | Assessing the Performance of CASPT2 and DFT Methods for the Description of Long, Multicenter<br>Bonding in Dimers between Radical Ions. Journal of Chemical Theory and Computation, 2014, 10,<br>650-658.                                                          | 2.3       | 29        |
| 36 | Two Cu2and Zn2Metallamacrocycles Featuring a Novel Extended π-Conjugated Carbazole Bridge.<br>Inorganic Chemistry, 2007, 46, 2947-2949.                                                                                                                            | 1.9       | 28        |

| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Insights into the magnetism and phase transitions of organic radical-based materials. Journal of<br>Materials Chemistry C, 2021, 9, 10624-10646.                                                                                                                                      | 2.7 | 27        |
| 38 | Bistability in Organic Magnetic Materials: A Comparative Study of the Key Differences between<br>Hysteretic and Nonâ€hysteretic Spin Transitions in Dithiazolyl Radicals. Chemistry - A European Journal,<br>2017, 23, 3479-3489.                                                     | 1.7 | 26        |
| 39 | Analysis of the Acting Forces in a Theory of Catalysis and Mechanochemistry. Journal of Physical<br>Chemistry A, 2017, 121, 2820-2838.                                                                                                                                                | 1.1 | 24        |
| 40 | Structural and Magnetic Properties of a Complete Halide Series of Nill Complexes with a Pyridine-Containing 14-Membered Macrocycle. Inorganic Chemistry, 2006, 45, 7621-7627.                                                                                                         | 1.9 | 23        |
| 41 | Molecules Designed to Contain Two Weakly Coupled Spins with a Photoswitchable Spacer. Chemistry -<br>A European Journal, 2017, 23, 13648-13659.                                                                                                                                       | 1.7 | 22        |
| 42 | An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis. Journal of Chemical Physics, 2017, 147, 152710.                                                                                                 | 1.2 | 22        |
| 43 | Unravelling the Key Driving Forces of the Spin Transition in π-Dimers of Spiro-biphenalenyl-Based<br>Radicals. Journal of the American Chemical Society, 2015, 137, 12843-12855.                                                                                                      | 6.6 | 20        |
| 44 | New coordination features; a bridging pyridine and the forced shortest non-covalent distance<br>between two CO <sub>3</sub> <sup>2â~</sup> species. Chemical Science, 2015, 6, 123-131.                                                                                               | 3.7 | 20        |
| 45 | Magnetostructural Dynamics from Hubbard- <i>U</i> Corrected Spin-Projection: [2Feâ^'2S] Complex in Ferredoxin. Journal of Chemical Theory and Computation, 2010, 6, 569-575.                                                                                                          | 2.3 | 19        |
| 46 | Unraveling the Role of Water in the Stereoselective Step of Aqueous Proline atalyzed Aldol<br>Reactions. Chemistry - A European Journal, 2012, 18, 15868-15874.                                                                                                                       | 1.7 | 19        |
| 47 | Toward a theory of mechanochemistry: Simple models from the very beginnings. International Journal of Quantum Chemistry, 2018, 118, e25775.                                                                                                                                           | 1.0 | 18        |
| 48 | Controlling pairing of ï€-conjugated electrons in 2D covalent organic radical frameworks via in-plane strain. Nature Communications, 2021, 12, 1705.                                                                                                                                  | 5.8 | 18        |
| 49 | The Origin of the Magnetic Moments in Compressed Crystals of Polymeric C60. Angewandte Chemie -<br>International Edition, 2004, 43, 577-580.                                                                                                                                          | 7.2 | 17        |
| 50 | Evaluation of the capability of C60-fullerene to act as a magnetic coupling unit. Journal of Physics and Chemistry of Solids, 2004, 65, 787-791.                                                                                                                                      | 1.9 | 17        |
| 51 | Control of Two-Electron Four-Center (2e-/4c) Câ^C Bond Formation Observed for Tetracyanoethenide<br>Dimerization, [TCNE]22 Inorganic Chemistry, 2007, 46, 103-107.                                                                                                                    | 1.9 | 17        |
| 52 | Hydrogen bond assisted co-crystallization of a bimetallic<br>Mn <sup>III</sup> <sub>2</sub> Ni <sup>II</sup> <sub>2</sub> cluster and a<br>Ni <sup>II</sup> <sub>2</sub> cluster unit: synthesis, structure, spectroscopy and magnetism. Dalton<br>Transactions, 2010, 39, 4986-4990. | 1.6 | 16        |
| 53 | Elucidating the 2D Magnetic Topology of the â€~Metal–Radical' TTTAâ‹Cu(hfac) <sub>2</sub> System.<br>Chemistry - A European Journal, 2014, 20, 7083-7090.                                                                                                                             | 1.7 | 16        |
| 54 | Linear or Cyclic Clusters of Cu(II) with a Hierarchical Relationship. Inorganic Chemistry, 2014, 53, 3290-3297.                                                                                                                                                                       | 1.9 | 16        |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Towards the tailored design of benzotriazinyl-based organic radicals displaying a spin transition.<br>Chemical Communications, 2015, 51, 15776-15779.                                                                     | 2.2 | 16        |
| 56 | Forceâ€Induced Reversal of βâ€Eliminations: Stressed Disulfide Bonds in Alkaline Solution. Angewandte<br>Chemie - International Edition, 2016, 55, 1304-1308.                                                             | 7.2 | 16        |
| 57 | The magnetic fingerprint of dithiazolyl-based molecule magnets. Physical Chemistry Chemical Physics, 2018, 20, 20406-20416.                                                                                               | 1.3 | 16        |
| 58 | <i>S</i> =1/2 Oneâ€Dimensional Randomâ€Exchange Ferromagnetic Zigzag Ladder, Which Exhibits Competing<br>Interactions in a Critical Regime. Chemistry - A European Journal, 2014, 20, 8355-8362.                          | 1.7 | 15        |
| 59 | Revealing the Magnetostructural Dynamics of [2Fe-2S] Ferredoxins from Reduced-Dimensionality<br>Analysis of Antiferromagnetic Exchange Coupling Fluctuations. Journal of Physical Chemistry B, 2010,<br>114, 11612-11619. | 1.2 | 14        |
| 60 | The Effect of Tensile Stress on the Conformational Free Energy Landscape of Disulfide Bonds. PLoS ONE, 2014, 9, e108812.                                                                                                  | 1.1 | 14        |
| 61 | On the Importance of Thermal Effects and Crystalline Disorder in the Magnetism of<br>Benzotriazinylâ€Derived Organic Radicals. Chemistry - an Asian Journal, 2014, 9, 3612-3622.                                          | 1.7 | 14        |
| 62 | 2D Hexagonal Covalent Organic Radical Frameworks as Tunable Correlated Electron Systems.<br>Advanced Functional Materials, 2021, 31, 2004584.                                                                             | 7.8 | 14        |
| 63 | Two isosceles coordination [Ni3] triangles strongly interacting via hydrogen bonds. Polyhedron, 2013, 52, 1369-1374.                                                                                                      | 1.0 | 13        |
| 64 | Structural and Magnetic Diversity Based on Different Imidazolate Linkers in Cu(II)-Azido Coordination<br>Compounds. Inorganic Chemistry, 2014, 53, 11991-12001.                                                           | 1.9 | 13        |
| 65 | A First-Principles Analysis of the Magnetism of Cull Polynuclear Coordination Complexes: the Case of<br>[Cu4(bpy)4(aspartate)2(H2O)3](ClO4)4•2.5H2O. Molecules, 2004, 9, 757-770.                                         | 1.7 | 12        |
| 66 | Tracing the Sources of the Different Magnetic Behavior in the Two Phases of the Bistable<br>(BDTA) <sub>2</sub> [Co(mnt) <sub>2</sub> ] Compound. Inorganic Chemistry, 2012, 51, 8646-8648.                               | 1.9 | 12        |
| 67 | Study of the magnetic exchange within the cluster polymer [NaCu6(gly)8(ClO4)3(H2O)]n(ClO4)2n.<br>Inorganica Chimica Acta, 2008, 361, 3919-3925.                                                                           | 1.2 | 10        |
| 68 | Disclosing the Ligand- and Solvent-Induced Changes on the Spin Transition and Optical Properties of Fe(II)-Indazolylpyridine Complexes. Magnetochemistry, 2016, 2, 6.                                                     | 1.0 | 10        |
| 69 | Ferromagnetic Exchange in Bichloride Bridged Cu(II) Chains: Magnetostructural Correlations between Ordered and Disordered Systems. Inorganic Chemistry, 2017, 56, 5441-5454.                                              | 1.9 | 10        |
| 70 | Origin of Bistability in the Butyl‧ubstituted Spirobiphenalenylâ€Based Neutral Radical Material.<br>Chemistry - A European Journal, 2017, 23, 7772-7784.                                                                  | 1.7 | 10        |
| 71 | Ferromagnetism in pressed polymerizedC60solids induced byC60cage vacancies: A density-functional study. Physical Review B, 2006, 73, .                                                                                    | 1.1 | 9         |
| 72 | Twistable dipolar aryl rings as electric field actuated conformational molecular switches. Physical<br>Chemistry Chemical Physics, 2021, 23, 3844-3855.                                                                   | 1.3 | 9         |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Nanomechanics of Bidentate Thiolate Ligands on Gold Surfaces. Physical Review Letters, 2015, 114, 075501.                                                                                                                                                     | 2.9 | 8         |
| 74 | The reaction mechanism of polyalcohol dehydration in hot pressurized water. Physical Chemistry Chemical Physics, 2016, 18, 32438-32447.                                                                                                                       | 1.3 | 8         |
| 75 | Formation of Long, Multicenter ï€â€{TCNE] <sub>2</sub> <sup>2â^'</sup> Dimers in Solution: Solvation<br>and Stability Assessed through Molecular Dynamics Simulations. Chemistry - A European Journal, 2016,<br>22, 17037-17046.                              | 1.7 | 7         |
| 76 | Reorganization of Intermolecular Interactions in the Polymorphic Phase Transition of a Prototypical Dithiazolyl-Based Bistable Material. Crystal Growth and Design, 2019, 19, 2329-2339.                                                                      | 1.4 | 7         |
| 77 | Two different mechanisms of stabilization of regular π-stacks of radicals in switchable<br>dithiazolyl-based materials. Journal of Materials Chemistry C, 2020, 8, 5437-5448.                                                                                 | 2.7 | 7         |
| 78 | Pitfalls on evaluating pair exchange interactions for modelling molecule-based magnetism. Journal of<br>Materials Chemistry C, 2021, 9, 10647-10660.                                                                                                          | 2.7 | 7         |
| 79 | Accurate calculation of spin-state energy gaps in Fe(iii) spin-crossover systems using density functional methods. Dalton Transactions, 2021, 50, 17635-17642.                                                                                                | 1.6 | 7         |
| 80 | Electronic Excitation Energies in Dimers between Radical Ions Presenting Long, Multicenter Bonding.<br>Journal of Chemical Theory and Computation, 2015, 11, 2651-2660.                                                                                       | 2.3 | 6         |
| 81 | First-principles study of the coexisting ferroelectric and ferromagnetic properties of the La0.75Bi0.25CrO3 compound. Computational Materials Science, 2020, 171, 109262.                                                                                     | 1.4 | 6         |
| 82 | Barnes Update Applied in the Gauss–Newton Method: An Improved Algorithm to Locate Bond Breaking<br>Points. Journal of Chemical Theory and Computation, 2021, 17, 996-1007.                                                                                    | 2.3 | 6         |
| 83 | Low temperature structures and magnetic interactions in the organic-based ferromagnetic and<br>metamagnetic polymorphs of decamethylferrocenium 7,7,8,8-tetracyano-p-quinodimethanide,<br>[FeCp*2]Ë™+[TCNQ]Ë™â^'. Dalton Transactions, 2021, 50, 11228-11242. | 1.6 | 6         |
| 84 | Controlling Chemical Reactivity with Optimally Oriented Electric Fields: A Generalization of the Newton Trajectory Method. Journal of Chemical Theory and Computation, 2022, 18, 935-952.                                                                     | 2.3 | 6         |
| 85 | Refined metadynamics through canonical sampling using timeâ€invariant bias potential: A study of polyalcohol dehydration in hot acidic solutions. Journal of Computational Chemistry, 2021, 42, 156-165.                                                      | 1.5 | 5         |
| 86 | Generalized Stone-Wales transformation as the possible origin of ferromagnetism in polymeric C60: A<br>density-functional theory study. Journal of Chemical Physics, 2006, 125, 174312.                                                                       | 1.2 | 4         |
| 87 | Understanding Competition of Polyalcohol Dehydration Reactions in Hot Water. Journal of Physical<br>Chemistry B, 2019, 123, 1662-1671.                                                                                                                        | 1.2 | 4         |
| 88 | Structural, ferroelectric, and optical properties of <scp>Bi<sup>3+</sup></scp> doped<br><scp>YFeO<sub>3</sub></scp> : A firstâ€principles study. International Journal of Quantum Chemistry,<br>2021, 121, e26551.                                           | 1.0 | 4         |
| 89 | Forceâ€Induced Reversal of βâ€Eliminations: Stressed Disulfide Bonds in Alkaline Solution. Angewandte<br>Chemie, 2016, 128, 1326-1330.                                                                                                                        | 1.6 | 3         |
| 90 | Interplay between the Gentlest Ascent Dynamics Method and Conjugate Directions to Locate Transition States. Journal of Chemical Theory and Computation, 2019, 15, 5426-5439.                                                                                  | 2.3 | 3         |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Broken Inter-C60Bonds as the Cause of Magnetism in Polymeric C60:Â A Density Functional Study Using<br>C60Dimers. Journal of Physical Chemistry A, 2005, 109, 4979-4982.                            | 1.1 | 2         |
| 92 | Effect of La3+/Sr2+ ordering on the magnetic properties of La2/3Sr1/3MnO3 by first principles calculations. Computational Materials Science, 2020, 177, 109575.                                     | 1.4 | 2         |
| 93 | Electronic structure and magnetic coupling in selenium substituted pyridine-bridged bisdithiazolyl multifunctional molecular materials. Physical Chemistry Chemical Physics, 2022, 24, 12196-12207. | 1.3 | 2         |
| 94 | Selective Nanomechanics of Aromatic versus Aliphatic Thiolates on Gold Surfaces. Physical Review<br>Letters, 2019, 122, 086801.                                                                     | 2.9 | 1         |
| 95 | Structural, electronic and ferroelectric properties of Zn93.75M6.25O (MÂ=ÂSr, Ba): first-principles calculations. Scripta Materialia, 2020, 187, 8-12.                                              | 2.6 | 1         |
| 96 | Serving science through publishing. , 0, 1, 1.                                                                                                                                                      |     | 1         |
| 97 | The Origin of the Magnetic Moments in Compressed Crystals of Polymeric C60 ChemInform, 2004, 35, no.                                                                                                | 0.1 | 0         |