Ji Wook Shim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9138466/publications.pdf

Version: 2024-02-01

516561 454834 1,231 36 16 30 citations h-index g-index papers 36 36 36 1740 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Single molecule sensing by nanopores and nanopore devices. Analyst, The, 2010, 135, 441-451.	1.7	166
2	Single-molecule detection of folding and unfolding of the G-quadruplex aptamer in a nanopore nanocavity. Nucleic Acids Research, 2009, 37, 972-982.	6.5	132
3	Detection and Quantification of Methylation in DNA using Solid-State Nanopores. Scientific Reports, 2013, 3, 1389.	1.6	131
4	Electrochemistry at the Edge of a Single Graphene Layer in a Nanopore. ACS Nano, 2013, 7, 834-843.	7.3	105
5	Slowing DNA Transport Using Graphene–DNA Interactions. Advanced Functional Materials, 2015, 25, 936-946.	7.8	102
6	Stochastic Sensing on a Modular Chip Containing a Single-Ion Channel. Analytical Chemistry, 2007, 79, 2207-2213.	3.2	94
7	Nanopore-Based Assay for Detection of Methylation in Double-Stranded DNA Fragments. ACS Nano, 2015, 9, 290-300.	7.3	73
8	Electron beam induced local crystallization of HfO2 nanopores for biosensing applications. Nanoscale, 2013, 5, 10887.	2.8	69
9	Encapsulating a Single G-Quadruplex Aptamer in a Protein Nanocavity. Journal of Physical Chemistry B, 2008, 112, 8354-8360.	1.2	53
10	Direct Visualization of Single-Molecule Translocations through Synthetic Nanopores Comparable in Size to a Molecule. ACS Nano, 2013, 7, 4057-4069.	7.3	45
11	Detection of methylation on dsDNA using nanopores in a MoS ₂ membrane. Nanoscale, 2017, 9, 14836-14845.	2.8	34
12	Single-molecule investigation of G-quadruplex using a nanopore sensor. Methods, 2012, 57, 40-46.	1.9	28
13	In vitro synthesis, tetramerization and single channel characterization of virus-encoded potassium channel Kcv. FEBS Letters, 2007, 581, 1027-1034.	1.3	25
14	Using a nanopore for single molecule detection and single cell transfection. Analyst, The, 2012, 137, 3020.	1.7	23
15	Research Highlights: Highlights from the last year in nanomedicine. Nanomedicine, 2013, 8, 13-15.	1.7	22
16	Light-Responsive Polymeric Micellar Nanoparticles with Enhanced Formulation Stability. Polymers, 2021, 13, 377.	2.0	18
17	Lipid bilayer membrane technologies: A review on single-molecule studies of DNA sequencing by using membrane nanopores. Mikrochimica Acta, 2017, 184, 1883-1897.	2.5	14
18	Piecing together the puzzle: nanopore technology in detection and quantification of cancer biomarkers. RSC Advances, 2017, 7, 42653-42666.	1.7	13

#	Article	IF	CITATIONS
19	Modeling and Analysis of Intercalant Effects on Circular DNA Conformation. ACS Nano, 2016, 10, 8910-8917.	7.3	12
20	Nanopore based detection of Bacillus thuringiensis HD-73 spores using aptamers and versatile DNA hairpins. Nanoscale, 2018, 10, 11955-11961.	2.8	12
21	Employing LiCl salt gradient in the wild-type \hat{l} ±-hemolysin nanopore to slow down DNA translocation and detect methylated cytosine. Nanoscale, 2019, 11, 10536-10545.	2.8	12
22	Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown. Biomedical Microdevices, 2018, 20, 38.	1.4	9
23	Increased dwell time and occurrence of dsDNA translocation events through solid state nanopores by LiCl concentration gradients. Electrophoresis, 2019, 40, 1082-1090.	1.3	9
24	Magnetophoretic-based microfluidic device for DNA Concentration. Biomedical Microdevices, 2016, 18, 28.	1.4	8
25	Hydrodynamic loading and viscous damping of patterned perforations on microfabricated resonant structures. Applied Physics Letters, 2012, 100, .	1.5	5
26	System development for multichannel electrotactile stimulation on the lips. Medical Engineering and Physics, 2006, 28, 734-739.	0.8	4
27	Investigation of compacted DNA structures induced by Na+and K+monovalent cations using biological nanopores. Analyst, The, 2018, 143, 906-913.	1.7	4
28	Separation of heteromeric potassium channel Kcv towards probing subunit compositionâ€regulated ion permeation and gating. FEBS Letters, 2010, 584, 1602-1608.	1.3	3
29	Nanopore sensors for DNA analysis. , 2012, , .		3
30	Graphene nanopores for nucleic acid analysis. , 2012, , .		1
31	Detection of Methylation on dsDNA at Single-Molecule Level using Solid-State Nanopores. Biophysical Journal, 2018, 114, 216a.	0.2	1
32	Quantitative Analysis of the Membrane Affinity of Local Anesthetics Using a Model Cell Membrane. Membranes, 2021, 11, 579.	1.4	1
33	Discriminating Bases by Stretching Double-Stranded DNA in a Nanopore. Biophysical Journal, 2010, 98, 599a.	0.2	0
34	Using Measurements of the ion Current Through a Synthetic Nanopore to Discriminate Nucleotides in a Single DNA Molecule. Biophysical Journal, 2011, 100, 521a.	0.2	0
35	Single Cell Electroporation using a Nanopore. Biophysical Journal, 2012, 102, 203a.	0.2	0
36	Third Generation DNA Sequencing with a Nanopore. , 2011, , 287-311.		0