
Vijayaraghavan Rangachari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9138140/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Charge and redox states modulate granulin—TDP-43 coacervation toward phase separation or aggregation. Biophysical Journal, 2022, 121, 2107-2126.	0.5	12
2	Are granulins copper sequestering proteins?. Proteins: Structure, Function and Bioinformatics, 2021, 89, 450-461.	2.6	6
3	Biophysical characteristics of lipidâ€induced Aβ oligomers correlate to distinctive phenotypes in transgenic mice. FASEB Journal, 2021, 35, e21318.	0.5	12
4	Prion-like C-Terminal Domain of TDP-43 and α-Synuclein Interact Synergistically to Generate Neurotoxic Hybrid Fibrils. Journal of Molecular Biology, 2021, 433, 166953.	4.2	40
5	αS Oligomers Generated from Interactions with a Polyunsaturated Fatty Acid and a Dopamine Metabolite Differentially Interact with Aβ to Enhance Neurotoxicity. ACS Chemical Neuroscience, 2021, 12, 4153-4161.	3.5	10
6	Granulins modulate liquid–liquid phase separation and aggregation of the prion-like C-terminal domain of the neurodegeneration-associated protein TDP-43. Journal of Biological Chemistry, 2020, 295, 2506-2519.	3.4	28
7	Effects of Stereochemistry and Hydrogen Bonding on Glycopolymer–Amyloid-β Interactions. Biomacromolecules, 2020, 21, 4280-4293.	5.4	12
8	Disorder and cysteines in proteins: A design for orchestration of conformational see-saw and modulatory functions. Progress in Molecular Biology and Translational Science, 2020, 174, 331-373.	1.7	22
9	Aqueous RAFT Synthesis of Low Molecular Weight Anionic Polymers for Determination of Structure/Binding Interactions with Gliadin. Macromolecular Bioscience, 2020, 20, 2000125.	4.1	0
10	A game-theoretic approach to deciphering the dynamics of amyloid- <i>β</i> aggregation along competing pathways. Royal Society Open Science, 2020, 7, 191814.	2.4	4
11	Cloning, expression and purification of the low-complexity region of RanBP9 protein. Protein Expression and Purification, 2020, 172, 105630.	1.3	10
12	Global fitting and parameter identifiability for amyloid- \hat{l}^2 aggregation with competing pathways. , 2020, , .		2
13	Large fatty acid-derived Aβ42 oligomers form ring-like assemblies. Journal of Chemical Physics, 2019, 150, 075101.	3.0	9
14	Cysteine-rich granulin-3 rapidly promotes amyloid-β fibrils in both redox states. Biochemical Journal, 2019, 476, 859-873.	3.7	9
15	Propagation of an Aβ Dodecamer Strain Involves a Three-Step Mechanism and a Key Intermediate. Biophysical Journal, 2018, 114, 539-549.	0.5	12
16	Cause and consequence of Aβ – Lipid interactions in Alzheimer disease pathogenesis. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1652-1662.	2.6	42
17	Strain-specific Fibril Propagation by an AÎ ² Dodecamer. Scientific Reports, 2017, 7, 40787.	3.3	41
18	Disulfide bonds and disorder in granulinâ€3: An unusual handshake between structural stability and plasticity. Protein Science, 2017, 26, 1759-1772.	7.6	18

#	Article	IF	CITATIONS
19	Aqueous RAFT Synthesis of Glycopolymers for Determination of Saccharide Structure and Concentration Effects on Amyloid \hat{I}^2 Aggregation. Biomacromolecules, 2017, 18, 3359-3366.	5.4	22
20	Fatty Acid Concentration and Phase Transitions Modulate Al ² Aggregation Pathways. Scientific Reports, 2017, 7, 10370.	3.3	11
21	Fully reduced granulin-B is intrinsically disordered and displays concentration-dependent dynamics. Protein Engineering, Design and Selection, 2016, 29, 177-186.	2.1	15
22	Determination of critical nucleation number for a single nucleation amyloid-β aggregation model. Mathematical Biosciences, 2016, 273, 70-79.	1.9	31
23	Conformational Dynamics of Specific AÎ ² Oligomers Govern Their Ability To Replicate and Induce Neuronal Apoptosis. Biochemistry, 2016, 55, 2238-2250.	2.5	26
24	Self-Propagative Replication of AÎ ² Oligomers Suggests Potential Transmissibility in Alzheimer Disease. PLoS ONE, 2014, 9, e111492.	2.5	29
25	Dopamineâ€induced αâ€synuclein oligomers show self―and crossâ€propagation properties. Protein Science, 2014, 23, 1369-1379.	7.6	36
26	The Natural Product Betulinic Acid Rapidly Promotes Amyloid-β Fibril Formation at the Expense of Soluble Oligomers. ACS Chemical Neuroscience, 2012, 3, 900-908.	3.5	29
27	Specific Soluble Oligomers of Amyloid-β Peptide Undergo Replication and Form Non-fibrillar Aggregates in Interfacial Environments. Journal of Biological Chemistry, 2012, 287, 21253-21264.	3.4	41
28	Poster: In silico hypotheses of the Aβ42 peptide aggregation process in Alzheimer's disease. , 2011, , .		0
29	Non-Esterified Fatty Acids Generate Distinct Low-Molecular Weight Amyloid-β (Aβ42) Oligomers along Pathway Different from Fibril Formation. PLoS ONE, 2011, 6, e18759.	2.5	37
30	Dynamics of protofibril elongation and association involved in Aβ42 peptide aggregation in Alzheimer's disease. BMC Bioinformatics, 2010, 11, S24.	2.6	38
31	Inhibition of Aβ42 Peptide Aggregation by a Binuclear Ruthenium(II)â^'Platinum(II) Complex: Potential for Multimetal Organometallics as Anti-amyloid Agents. ACS Chemical Neuroscience, 2010, 1, 691-701.	3.5	54
32	Rationally designed dehydroalanine (ΔAla)â€containing peptides inhibit amyloidâ€Î² (Aβ) peptide aggregation. Biopolymers, 2009, 91, 456-465.	2.4	22
33	Biophysical Analyses of Synthetic Amyloid-β(1â^'42) Aggregates before and after Covalent Cross-Linking. Implications for Deducing the Structure of Endogenous Amyloid-β Oligomers. Biochemistry, 2009, 48, 11796-11806.	2.5	44
34	Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7607-7612.	7.1	523
35	Amyloid-β(1â^'42) Rapidly Forms Protofibrils and Oligomers by Distinct Pathways in Low Concentrations of Sodium Dodecylsulfate. Biochemistry, 2007, 46, 12451-12462.	2.5	149
36	Secondary Structure and Interfacial Aggregation of Amyloid-β(1â^'40) on Sodium Dodecyl Sulfate Micellesâ€. Biochemistry, 2006, 45, 8639-8648.	2.5	79