Julian D Marshall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9137916/publications.pdf Version: 2024-02-01

ίλη Ο Μλάςηλ

#	Article	IF	CITATIONS
1	Addressing Global Mortality from Ambient PM _{2.5} . Environmental Science & Technology, 2015, 49, 8057-8066.	4.6	730
2	Long-Term Ozone Exposure and Mortality in a Large Prospective Study. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 1134-1142.	2.5	602
3	High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data. Environmental Science & Technology, 2017, 51, 6999-7008.	4.6	474
4	Improving health through policies that promote active travel: A review of evidence to support integrated health impact assessment. Environment International, 2011, 37, 766-777.	4.8	452
5	Inequity in consumption of goods and services adds to racial–ethnic disparities in air pollution exposure. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6001-6006.	3.3	349
6	National Patterns in Environmental Injustice and Inequality: Outdoor NO2 Air Pollution in the United States. PLoS ONE, 2014, 9, e94431.	1.1	308
7	PM _{2.5} polluters disproportionately and systemically affect people of color in the United States. Science Advances, 2021, 7, .	4.7	286
8	Framing the Elusive Concept of Sustainability:Â A Sustainability Hierarchy. Environmental Science & Technology, 2005, 39, 673-682.	4.6	215
9	Within-urban variability in ambient air pollution: Comparison of estimation methods. Atmospheric Environment, 2008, 42, 1359-1369.	1.9	213
10	Health and climate benefits of cookstove replacement options. Energy Policy, 2011, 39, 7530-7542.	4.2	210
11	Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18490-18495.	3.3	200
12	Electric Vehicles in China: Emissions and Health Impacts. Environmental Science & Technology, 2012, 46, 2018-2024.	4.6	194
13	The impact of daily mobility on exposure to traffic-related air pollution and health effect estimates. Journal of Exposure Science and Environmental Epidemiology, 2011, 21, 42-48.	1.8	184
14	Healthy Neighborhoods: Walkability and Air Pollution. Environmental Health Perspectives, 2009, 117, 1752-1759.	2.8	183
15	National Satellite-Based Land-Use Regression: NO ₂ in the United States. Environmental Science & Technology, 2011, 45, 4407-4414.	4.6	174
16	Global Land Use Regression Model for Nitrogen Dioxide Air Pollution. Environmental Science & amp; Technology, 2017, 51, 6957-6964.	4.6	174
17	Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India. Atmospheric Environment, 2011, 45, 4470-4480.	1.9	173
18	Land Use Regression Models of On-Road Particulate Air Pollution (Particle Number, Black Carbon,) Tj ETQq0 0	0 rgBT /Ove 4.6	rlock 10 Tf 50 169

2015, 49, 9194-9202.

#	Article	IF	CITATIONS
19	Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II. Environmental Health Perspectives, 2017, 125, 087013.	2.8	169
20	Historical Redlining Is Associated with Present-Day Air Pollution Disparities in U.S. Cities. Environmental Science and Technology Letters, 2022, 9, 345-350.	3.9	162
21	Fine-scale damage estimates of particulate matter air pollution reveal opportunities for location-specific mitigation of emissions. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8775-8780.	3.3	158
22	Western European Land Use Regression Incorporating Satellite- and Ground-Based Measurements of NO ₂ and PM ₁₀ . Environmental Science & Technology, 2013, 47, 13555-13564.	4.6	155
23	Disparities in Air Pollution Exposure in the United States by Race/Ethnicity and Income, 1990–2010. Environmental Health Perspectives, 2021, 129, 127005.	2.8	154
24	Impacts of urban form on future US passenger-vehicle greenhouse gas emissions. Energy Policy, 2010, 38, 4880-4887.	4.2	153
25	A national satellite-based land-use regression model for air pollution exposure assessment in Australia. Environmental Research, 2014, 135, 204-211.	3.7	147
26	Development of West-European PM 2.5 and NO 2 land use regression models incorporating satellite-derived and chemical transport modelling data. Environmental Research, 2016, 151, 1-10.	3.7	145
27	Mortality Risk and Fine Particulate Air Pollution in a Large, Representative Cohort of U.S. Adults. Environmental Health Perspectives, 2019, 127, 77007.	2.8	144
28	Health Impacts of the Built Environment: Within-Urban Variability in Physical Inactivity, Air Pollution, and Ischemic Heart Disease Mortality. Environmental Health Perspectives, 2012, 120, 247-253.	2.8	143
29	Air Quality and Urban Form in U.S. Urban Areas: Evidence from Regulatory Monitors. Environmental Science & Technology, 2011, 45, 7028-7035.	4.6	141
30	Long-Term Air Pollution Exposure and Blood Pressure in the Sister Study. Environmental Health Perspectives, 2015, 123, 951-958.	2.8	136
31	Satellite-Based NO ₂ and Model Validation in a National Prediction Model Based on Universal Kriging and Land-Use Regression. Environmental Science & Technology, 2016, 50, 3686-3694.	4.6	136
32	Intake Fraction for Particulate Matter: Recommendations for Life Cycle Impact Assessment. Environmental Science & Technology, 2011, 45, 4808-4816.	4.6	132
33	Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area. Atmospheric Environment, 2013, 69, 345-353.	1.9	129
34	Changes in Transportation-Related Air Pollution Exposures by Race-Ethnicity and Socioeconomic Status: Outdoor Nitrogen Dioxide in the United States in 2000 and 2010. Environmental Health Perspectives, 2017, 125, 097012.	2.8	128
35	InMAP: A model for air pollution interventions. PLoS ONE, 2017, 12, e0176131.	1.1	123
36	Spatiotemporal Land Use Regression Models of Fine, Ultrafine, and Black Carbon Particulate Matter in New Delhi, India. Environmental Science & Technology, 2013, 47, 12903-12911.	4.6	122

#	Article	IF	CITATIONS
37	Relationship between Urbanization and CO ₂ Emissions Depends on Income Level and Policy. Environmental Science & Technology, 2014, 48, 3632-3639.	4.6	121
38	The social costs of nitrogen. Science Advances, 2016, 2, e1600219.	4.7	118
39	Effects of Income and Urban Form on Urban NO ₂ : Global Evidence from Satellites. Environmental Science & Technology, 2011, 45, 4914-4919.	4.6	116
40	By Foot, Bus or Car: Children's School Travel and School Choice Policy. Environment and Planning A, 2010, 42, 2168-2185.	2.1	107
41	Global Intraurban Intake Fractions for Primary Air Pollutants from Vehicles and Other Distributed Sources. Environmental Science & amp; Technology, 2012, 46, 3415-3423.	4.6	105
42	Urban Land Area and Population Growth: A New Scaling Relationship for Metropolitan Expansion. Urban Studies, 2007, 44, 1889-1904.	2.2	104
43	Urban Form, Air Pollution, and Health. Current Environmental Health Reports, 2017, 4, 491-503.	3.2	104
44	National Spatiotemporal Exposure Surface for NO ₂ : Monthly Scaling of a Satellite-Derived Land-Use Regression, 2000–2010. Environmental Science & Technology, 2015, 49, 12297-12305.	4.6	103
45	Mapping Air Pollution with Google Street View Cars: Efficient Approaches with Mobile Monitoring and Land Use Regression. Environmental Science & amp; Technology, 2018, 52, 12563-12572.	4.6	103
46	National PM2.5 and NO2 exposure models for China based on land use regression, satellite measurements, and universal kriging. Science of the Total Environment, 2019, 655, 423-433.	3.9	101
47	Energy-Efficient Urban Form. Environmental Science & Technology, 2008, 42, 3133-3137.	4.6	100
48	On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM 2.5 , and particle size. Atmospheric Environment, 2015, 122, 65-73.	1.9	95
49	Particulate matter air pollution and national and county life expectancy loss in the USA: A spatiotemporal analysis. PLoS Medicine, 2019, 16, e1002856.	3.9	95
50	Intake fraction of primary pollutants: motor vehicle emissions in the South Coast Air Basin. Atmospheric Environment, 2003, 37, 3455-3468.	1.9	94
51	Environmental inequality: Air pollution exposures in California's South Coast Air Basin. Atmospheric Environment, 2008, 42, 5499-5503.	1.9	92
52	Impacts of the COVID-19 responses on traffic-related air pollution in a Northwestern US city. Science of the Total Environment, 2020, 747, 141325.	3.9	92
53	Inhalation of motor vehicle emissions: effects of urban population and land area. Atmospheric Environment, 2005, 39, 283-295.	1.9	85
54	PM2.5 exposure in highly polluted cities: A case study from New Delhi, India. Environmental Research, 2017, 156, 167-174.	3.7	84

4

#	Article	IF	CITATIONS
55	Fine Particulate Air Pollution from Electricity Generation in the US: Health Impacts by Race, Income, and Geography. Environmental Science & Technology, 2019, 53, 14010-14019.	4.6	83
56	Concentrations of criteria pollutants in the contiguous U.S., 1979 – 2015: Role of prediction model parsimony in integrated empirical geographic regression. PLoS ONE, 2020, 15, e0228535.	1.1	79
57	Health and Climate-Relevant Pollutant Concentrations from a Carbon-Finance Approved Cookstove Intervention in Rural India. Environmental Science & Technology, 2016, 50, 7228-7238.	4.6	74
58	Improving Environmental Performance Assessment: A Comparative Analysis of Weighting Methods Used to Evaluate Chemical Release Inventories. Journal of Industrial Ecology, 2008, 8, 143-172.	2.8	73
59	Air-quality-related health damages of maize. Nature Sustainability, 2019, 2, 397-403.	11.5	73
60	Cancer mortality risk, fine particulate air pollution, and smoking in a large, representative cohort of US adults. Cancer Causes and Control, 2020, 31, 767-776.	0.8	73
61	Inhalation intake of ambient air pollution in California's South Coast Air Basin. Atmospheric Environment, 2006, 40, 4381-4392.	1.9	71
62	Air quality–related health damages of food. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	70
63	Exposure to carbon monoxide, fine particle mass, and ultrafine particle number in Jakarta, Indonesia: Effect of commute mode. Science of the Total Environment, 2013, 443, 965-972.	3.9	66
64	An inter-comparison of the social costs of air quality from reduced-complexity models. Environmental Research Letters, 2019, 14, 074016.	2.2	66
65	Health effects of fine particulate matter in life cycle impact assessment: findings from the Basel Guidance Workshop. International Journal of Life Cycle Assessment, 2015, 20, 276-288.	2.2	65
66	Satellite-Based Land-Use Regression for Continental-Scale Long-Term Ambient PM _{2.5} Exposure Assessment in Australia. Environmental Science & Technology, 2018, 52, 12445-12455.	4.6	64
67	Reducing Mortality from Air Pollution in the United States by Targeting Specific Emission Sources. Environmental Science and Technology Letters, 2020, 7, 639-645.	3.9	64
68	Vehicle Self-Pollution Intake Fraction:Â Children's Exposure to School Bus Emissions. Environmental Science & Technology, 2005, 39, 2559-2563.	4.6	63
69	Assessing Exposure to Household Air Pollution: A Systematic Review and Pooled Analysis of Carbon Monoxide as a Surrogate Measure of Particulate Matter. Environmental Health Perspectives, 2017, 125, 076002.	2.8	61
70	Population-Level Exposure to Particulate Air Pollution during Active Travel: Planning for Low-Exposure, Health-Promoting Cities. Environmental Health Perspectives, 2017, 125, 527-534.	2.8	61
71	Chemical characterization and toxicity of particulate matter emissions from roadside trash combustion in urban India. Atmospheric Environment, 2016, 147, 22-30.	1.9	59
72	Prioritizing Environmental Justice and Equality: Diesel Emissions in Southern California. Environmental Science & Technology, 2014, 48, 4063-4068.	4.6	57

#	Article	IF	CITATIONS
73	Local- and regional-scale racial and ethnic disparities in air pollution determined by long-term mobile monitoring. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	57
74	Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model. Journal of Geophysical Research, 2011, 116, .	3.3	56
75	Ambient ozone and incident diabetes: A prospective analysis in a large cohort of African American women. Environment International, 2017, 102, 42-47.	4.8	56
76	Fine Particulate Matter Exposure and Cancer Incidence: Analysis of SEER Cancer Registry Data from 1992–2016. Environmental Health Perspectives, 2020, 128, 107004.	2.8	55
77	A panel study of the acute effects of personal exposure to household air pollution on ambulatory blood pressure in rural Indian women. Environmental Research, 2016, 147, 331-342.	3.7	54
78	Effect of Model Spatial Resolution on Estimates of Fine Particulate Matter Exposure and Exposure Disparities in the United States. Environmental Science and Technology Letters, 2018, 5, 436-441.	3.9	54
79	Traffic related air pollution and the burden of childhood asthma in the contiguous United States in 2000 and 2010. Environment International, 2019, 127, 858-867.	4.8	54
80	Changes in criteria air pollution levels in the US before, during, and after Covid-19 stay-at-home orders: Evidence from regulatory monitors. Science of the Total Environment, 2021, 769, 144693.	3.9	52
81	Vehicle Emissions during Children's School Commuting: Impacts of Education Policy. Environmental Science & Technology, 2010, 44, 1537-1543.	4.6	49
82	Global Effect Factors for Exposure to Fine Particulate Matter. Environmental Science & Technology, 2019, 53, 6855-6868.	4.6	49
83	Environmental Justice Aspects of Exposure to PM _{2.5} Emissions from Electric Vehicle Use in China. Environmental Science & Technology, 2015, 49, 13912-13920.	4.6	47
84	When, Where, and What? Characterizing Personal PM _{2.5} Exposure in Periurban India by Integrating GPS, Wearable Camera, and Ambient and Personal Monitoring Data. Environmental Science & Technology, 2018, 52, 13481-13490.	4.6	47
85	A Spatially and Temporally Explicit Life Cycle Inventory of Air Pollutants from Gasoline and Ethanol in the United States. Environmental Science & amp; Technology, 2012, 46, 11408-11417.	4.6	46
86	Health co-benefits of sub-national renewable energy policy in the US. Environmental Research Letters, 2019, 14, 085012.	2.2	45
87	Emissions of C ₆ –C ₈ aromatic compounds in the United States: Constraints from tall tower and aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2015, 120, 826-842.	1.2	44
88	Health and climate impacts of future United States land freight modelled with global-to-urban models. Nature Sustainability, 2019, 2, 105-112.	11.5	44
89	Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use. Environmental Science & Technology, 2012, 46, 8484-8492.	4.6	42
90	Day-of-Year Scaling Factors and Design Considerations for Nonmotorized Traffic Monitoring Programs. Transportation Research Record, 2014, 2468, 64-73.	1.0	42

#	Article	IF	CITATIONS
91	Independent Validation of National Satellite-Based Land-Use Regression Models for Nitrogen Dioxide Using Passive Samplers. Environmental Science & Technology, 2016, 50, 12331-12338.	4.6	42
92	Ambient Particulate Air Pollution and Blood Pressure in Peri-urban India. Epidemiology, 2019, 30, 492-500.	1.2	42
93	Intake Fraction of Urban Wood Smoke. Environmental Science & Technology, 2009, 43, 4701-4706.	4.6	39
94	Long term exposure to NO 2 and diabetes incidence in the Black Women's Health Study. Environmental Research, 2016, 148, 360-366.	3.7	39
95	Integrated assessment of exposure to PM2.5 in South India and its relation with cardiovascular risk: Design of the CHAI observational cohort study. International Journal of Hygiene and Environmental Health, 2017, 220, 1081-1088.	2.1	39
96	Using objective measures of stove use and indoor air quality to evaluate a cookstove intervention in rural Uganda. Energy for Sustainable Development, 2015, 25, 67-74.	2.0	37
97	Does Urban Form Affect Urban NO ₂ ? Satellite-Based Evidence for More than 1200 Cities. Environmental Science & Technology, 2017, 51, 12707-12716.	4.6	37
98	Long-Term Exposure to NO2 and Ozone and Hypertension Incidence in the Black Women's Health Study. American Journal of Hypertension, 2017, 30, 367-372.	1.0	35
99	Spatial decomposition analysis of NO2 and PM2.5 air pollution in the United States. Atmospheric Environment, 2020, 241, 117470.	1.9	35
100	Faster, Sooner, and More Simultaneously: How Recent Road and Air Transportation COâ,, Emission Trends in Developing Countries Differ From Historic Trends in the United States. Journal of Environment and Development, 2005, 14, 125-148.	1.6	34
101	Development of land-use regression models for fine particles and black carbon in peri-urban South India. Science of the Total Environment, 2018, 634, 77-86.	3.9	34
102	Applicability of a noise-based model to estimate in-traffic exposure to black carbon and particle number concentrations in different cultures. Environment International, 2015, 74, 89-98.	4.8	32
103	Marginal Emissions Factors for Electricity Generation in the Midcontinent ISO. Environmental Science & amp; Technology, 2017, 51, 14445-14452.	4.6	31
104	Determinants of Cookstoves and Fuel Choice Among Rural Households in India. EcoHealth, 2019, 16, 21-60.	0.9	31
105	Optimizing Emissions Reductions from the U.S. Power Sector for Climate and Health Benefits. Environmental Science & Technology, 2020, 54, 7513-7523.	4.6	31
106	Blue Skies Bluer?. Environmental Science & amp; Technology, 2015, 49, 13929-13936.	4.6	29
107	Predictors of Daily Mobility of Adults in Peri-Urban South India. International Journal of Environmental Research and Public Health, 2017, 14, 783.	1.2	29
108	In-use emissions from biomass and LPG stoves measured during a large, multi-year cookstove intervention study in rural India. Science of the Total Environment, 2021, 758, 143698.	3.9	29

#	Article	IF	CITATIONS
109	High-Spatial-Resolution Estimates of Ultrafine Particle Concentrations across the Continental United States. Environmental Science & Technology, 2021, 55, 10320-10331.	4.6	29
110	Use of spatiotemporal characteristics of ambient PM2.5 in rural South India to infer local versus regional contributions. Environmental Pollution, 2018, 239, 803-811.	3.7	28
111	Comparison of Mobile and Fixed-Site Black Carbon Measurements for High-Resolution Urban Pollution Mapping. Environmental Science & Technology, 2020, 54, 7848-7857.	4.6	28
112	Spatiotemporal Aspects of Real-Time PM _{2.5} : Low- and Middle-Income Neighborhoods in Bangalore, India. Environmental Science & Technology, 2011, 45, 5629-5636.	4.6	27
113	Emission factors of health―and climateâ€relevant pollutants measured in home during a carbonâ€financeâ€approved cookstove intervention in rural India. GeoHealth, 2017, 1, 222-236.	1.9	27
114	Impact, efficiency, inequality, and injustice of urban air pollution: variability by emission location. Environmental Research Letters, 2018, 13, 024002.	2.2	27
115	Air pollution and mortality in a large, representative U.S. cohort: multiple-pollutant analyses, and spatial and temporal decompositions. Environmental Health, 2019, 18, 101.	1.7	27
116	Ambient Air Pollution and Socioeconomic Status in China. Environmental Health Perspectives, 2022, 130, .	2.8	27
117	Toward Stable, General Machineâ€Learned Models of the Atmospheric Chemical System. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032759.	1.2	25
118	On-highway vehicle emission factors, and spatial patterns, based on mobile monitoring and absolute principal component score. Science of the Total Environment, 2019, 676, 242-251.	3.9	24
119	Personal exposure to particulate matter in peri-urban India: predictors and association with ambient concentration at residence. Journal of Exposure Science and Environmental Epidemiology, 2020, 30, 596-605.	1.8	23
120	Lack of association between particulate air pollution and blood glucose levels and diabetic status in peri-urban India. Environment International, 2019, 131, 105033.	4.8	22
121	Long-term nitrogen dioxide exposure assessment using back-extrapolation of satellite-based land-use regression models for Australia. Environmental Research, 2018, 163, 16-25.	3.7	21
122	Cardiopulmonary Mortality and Fine Particulate Air Pollution by Species and Source in a National U.S. Cohort. Environmental Science & Technology, 2022, 56, 7214-7223.	4.6	21
123	Effect on blood pressure and eye health symptoms in a climate-financed randomized cookstove intervention study in rural India. Environmental Research, 2018, 166, 658-667.	3.7	20
124	National Empirical Models of Air Pollution Using Microscale Measures of the Urban Environment. Environmental Science & Technology, 2021, 55, 15519-15530.	4.6	19
125	Fine Particulate Matter Air Pollution and Mortality Risk Among US Cancer Patients and Survivors. JNCI Cancer Spectrum, 2021, 5, pkab001.	1.4	18
126	Effect of temporal variability in infiltration on contaminant transport in the unsaturated zone. Journal of Contaminant Hydrology, 2000, 46, 151-161.	1.6	17

#	Article	IF	CITATIONS
127	Association between ambient and household air pollution with carotid intima-media thickness in peri-urban South India: CHAI-Project. International Journal of Epidemiology, 2020, 49, 69-79.	0.9	17
128	Sensitivity analysis of area-wide, mobile source emission factors to high-emitter vehicles in Los Angeles. Atmospheric Environment, 2020, 223, 117212.	1.9	17
129	The food we eat, the air we breathe: a review of the fine particulate matter-induced air quality health impacts of the global food system. Environmental Research Letters, 2021, 16, 103004.	2.2	17
130	A Spatial Model of Air Pollution: The Impact of the Concentration-Response Function. Journal of the Association of Environmental and Resource Economists, 2014, 1, 451-479.	1.0	16
131	Life cycle air quality impacts on human health from potential switchgrass production in the United States. Biomass and Bioenergy, 2018, 114, 73-82.	2.9	16
132	Identifying predictors of personal exposure to air temperature in peri-urban India. Science of the Total Environment, 2020, 707, 136114.	3.9	16
133	Ambient Air Pollution and 16-Year Weight Change in African-American Women. American Journal of Preventive Medicine, 2016, 51, e99-e105.	1.6	15
134	Wearable camera-derived microenvironments in relation to personal exposure to PM2.5. Environment International, 2018, 117, 300-307.	4.8	15
135	Sources of ambient PM2.5 exposure in 96 global cities. Atmospheric Environment, 2022, 286, 119234.	1.9	15
136	Reducing Motor Vehicle Greenhouse Gas Emissions in a Non-California State: A Case Study of Minnesota. Environmental Science & Technology, 2009, 43, 8721-8729.	4.6	14
137	Real-Time Prediction of Size-Resolved Ultrafine Particulate Matter on Freeways. Environmental Science & Technology, 2012, 46, 2234-2241.	4.6	14
138	Assessing the Effects of Stove Use Patterns and Kitchen Chimneys on Indoor Air Quality during a Multiyear Cookstove Randomized Control Trial in Rural India. Environmental Science & Technology, 2022, 56, 8326-8337.	4.6	14
139	Real-time indoor measurement of health and climate-relevant air pollution concentrations during a carbon-finance-approved cookstove intervention in rural India. Development Engineering, 2018, 3, 125-132.	1.4	13
140	Global, high-resolution, reduced-complexity air quality modeling for PM2.5 using InMAP (Intervention) Tj ETQq0 () 0.rgBT /C)verlock 10 T
141	Potential futures for road transportation CO ₂ emissions in the Asia Pacific. Asia Pacific Viewpoint, 2007, 48, 355-377.	0.8	10
142	Estimating long-term pollution exposure effects through inverse probability weighting methods with Cox proportional hazards models. Environmental Epidemiology, 2020, 4, e085.	1.4	10
143	Quantifying the Health Benefits of Urban Climate Mitigation Actions: Current State of the Epidemiological Evidence and Application in Health Impact Assessments. Frontiers in Sustainable Cities, 2021, 3, .	1.2	10
144	A data framework for assessing social inequality and equity in multiâ€sector social, ecological, infrastructural urban systems: Focus on fineâ€spatial scales. Journal of Industrial Ecology, 2022, 26, 145-163.	2.8	10

#	Article	IF	CITATIONS
145	Personal exposure to particulate air pollution and vascular damage in peri-urban South India. Environment International, 2020, 139, 105734.	4.8	7
146	The role of blank filter mass in attenuation measurements using an off-line transmissometer. Journal of Aerosol Science, 2019, 131, 41-47.	1.8	6
147	Intake Fraction. , 2006, , 237-251.		5
148	rtimicropem: an R package supporting the analysis of RTI MicroPEM output files. Journal of Open Source Software, 2017, 2, .	2.0	5
149	Models of Exposure for Use in Epidemiological Studies of Air Pollution Health Impacts. NATO Security Through Science Series C: Environmental Security, 2008, , 589-604.	0.1	4
150	Population exposure to ultrafine particles: Size-resolved and real-time models for highways. Transportation Research, Part D: Transport and Environment, 2016, 49, 323-336.	3.2	4
151	Developing a Low-Cost Passive Method for Long-Term Average Levels of Light-Absorbing Carbon Air Pollution in Polluted Indoor Environments. Sensors, 2020, 20, 3417.	2.1	4
152	Association of ambient and household air pollution with lung function in young adults in an peri-urban area of South-India: A cross-sectional study. Environment International, 2022, 165, 107290.	4.8	4
153	Response to Comment on "Natural and Anthropogenic Ethanol Sources in North America and Potential Atmospheric Impacts of Ethanol Fuel Use― Environmental Science & Technology, 2013, 47, 2141-2141.	4.6	3
154	Reanalysis of the association between reduction in long-term PM2.5 concentrations and improved life expectancy. Environmental Health, 2021, 20, 102.	1.7	3
155	A Parsimonious Approach to National Prediction: Criteria Pollutants in the Contiguous U.S., 1979 - 2015. ISEE Conference Abstracts, 2018, 2018, .	0.0	3
156	PM2.5 and ozone air pollution levels have not dropped consistently across the US following societal covid response. ISEE Conference Abstracts, 2020, 2020, .	0.0	3
157	Enhanced Integration of Health, Climate, and Air Quality Management Planning at the Urban Scale. Frontiers in Sustainable Cities, 0, 4, .	1.2	3
158	Response to Comment on "Vehicle Self-Pollution Intake Fraction: Children's Exposure to School Bus Emissions― Environmental Science & Technology, 2006, 40, 3124-3125.	4.6	2
159	Reply to Oron: Electric vehicles provide an opportunity to reduce environmental health effects of transportation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3974-E3974.	3.3	2
160	Wood Energy: The Dangers of Combustion. Science, 2009, 324, 1390-1390.	6.0	1
161	National Satellite-based Land Use Regression: NO2 in the United States. Epidemiology, 2011, 22, S81.	1.2	1
162	Challenges and Next Steps for Land-use Regression Models. Epidemiology, 2011, 22, S101.	1.2	1

#	Article	IF	CITATIONS
163	Intake Fractions for Vehicle Emissions in 88 Worldwide Urban Areas. Epidemiology, 2011, 22, S209.	1.2	1
164	Design and evaluation of mobile monitoring campaigns for exposure assessment in epidemiologic cohorts. ISEE Conference Abstracts, 2021, 2021, .	0.0	1
165	InMAP: A new model for air pollution health impact assessments. ISEE Conference Abstracts, 2016, 2016, .	0.0	1
166	U.S. Urban-Scale Intake Fraction of Motor Vehicle Emissions: Trends During 1950–2000. Epidemiology, 2006, 17, S31.	1.2	0
167	Exposure Assessment for Outdoor Air—A Simulation of Exposure Measurement Error on Health Effect Estimates. Epidemiology, 2011, 22, S201.	1.2	0
168	Within-city Variation in Exposures to Air Pollution and Physical Inactivity. Epidemiology, 2011, 22, S77.	1.2	0
169	Exposure Assessment for Improved Air Quality Management. Epidemiology, 2011, 22, S181-S182.	1.2	0
170	Is Epidemiology Important For Environmental Sustainability?. Epidemiology, 2011, 22, S143.	1.2	0
171	Satellite-derived NO2 and HCHO: Comparison to In Situ Measurement and Application to Air Quality Management. Epidemiology, 2011, 22, S263.	1.2	0
172	Real Time, Size-resolved Prediction of Ultrafine and Accumulation-mode Particle Concentrations on Freeways. Epidemiology, 2011, 22, S146.	1.2	0
173	Intake and Exposure Effects of Reducing Diesel PM in the South Coast. Epidemiology, 2011, 22, S216-S217.	1.2	0
174	Environmental health, racial/ethnic health-disparity, and climate impacts of freight transport in the United States. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
175	Racial-ethnic Disparities in PM2.5 Exposure in California: Differences by Season and Daily Pollution Level. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
176	Application of an ultra-low-cost passive sampler for light-absorbing carbon in India and Mongolia. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
177	Using a mobile monitoring campaign to characterize average exposures to ultrafine particulate matter and black carbon for a Seattle-based cohort. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
178	Ambient air pollution and socioeconomic status in China. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
179	A Mobility-Based Inhalation Intake Model. Epidemiology, 2006, 17, S53.	1.2	0