

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9137803/publications.pdf Version: 2024-02-01

ΗΛΙΥΠ

#	Article	IF	CITATIONS
1	A stepwise docking molecular dynamics approach for simulating antibody recognition with substantial conformational changes. Computational and Structural Biotechnology Journal, 2022, 20, 710-720.	4.1	1
2	Structures of pseudorabies virus capsids. Nature Communications, 2022, 13, 1533.	12.8	11
3	Cross-species tropism and antigenic landscapes of circulating SARS-CoV-2 variants. Cell Reports, 2022, 38, 110558.	6.4	15
4	Three SARS-CoV-2 antibodies provide broad and synergistic neutralization against variants of concern, including Omicron. Cell Reports, 2022, 39, 110862.	6.4	9
5	A Bacterially Expressed SARS-CoV-2 Receptor Binding Domain Fused With Cross-Reacting Material 197 A-Domain Elicits High Level of Neutralizing Antibodies in Mice. Frontiers in Microbiology, 2022, 13, 854630.	3.5	3
6	Cryo-EM structures reveal the molecular basis of receptor-initiated coxsackievirus uncoating. Cell Host and Microbe, 2021, 29, 448-462.e5.	11.0	19
7	Structural Basis for the Shared Neutralization Mechanism of Three Classes of Human Papillomavirus Type 58 Antibodies with Disparate Modes of Binding. Journal of Virology, 2021, 95, .	3.4	4
8	Novel monkey mAbs induced by a therapeutic vaccine targeting the hepatitis B surface antigen effectively suppress hepatitis B virus in mice. Antibody Therapeutics, 2021, 4, 197-207.	1.9	1
9	Cross-neutralizing antibodies bind a SARS-CoV-2 cryptic site and resist circulating variants. Nature Communications, 2021, 12, 5652.	12.8	49
10	Virusâ€Free and Liveâ€Cell Visualizing SARSâ€CoVâ€2 Cell Entry for Studies of Neutralizing Antibodies and Compound Inhibitors. Small Methods, 2021, 5, 2001031.	8.6	25
11	Engineering for an HPV 9-valent vaccine candidate using genomic constitutive over-expression and low lipopolysaccharide levels in Escherichia coli cells. Microbial Cell Factories, 2021, 20, 227.	4.0	5
12	Antagonistic anti-LILRB1 monoclonal antibody regulates antitumor functions of natural killer cells. , 2020, 8, e000515.		27
13	Near-atomic cryo-electron microscopy structures of varicella-zoster virus capsids. Nature Microbiology, 2020, 5, 1542-1552.	13.3	7
14	SARS-CoV-2 spike produced in insect cells elicits high neutralization titres in non-human primates. Emerging Microbes and Infections, 2020, 9, 2076-2090.	6.5	53
15	Rational design of a multi-valent human papillomavirus vaccine by capsomere-hybrid co-assembly of virus-like particles. Nature Communications, 2020, 11, 2841.	12.8	16
16	Genome re-sequencing and reannotation of the Escherichia coli ER2566 strain and transcriptome sequencing under overexpression conditions. BMC Genomics, 2020, 21, 407.	2.8	7
17	Identification of Antibodies with Non-overlapping Neutralization Sites that Target Coxsackievirus A16. Cell Host and Microbe, 2020, 27, 249-261.e5.	11.0	24
18	Recent Progress on the Versatility of Virus-Like Particles. Vaccines, 2020, 8, 139.	4.4	110

HAI YU

#	Article	IF	CITATIONS
19	Neutralizing antibodies against SARS-CoV-2: current understanding, challenge and perspective. Antibody Therapeutics, 2020, 3, 285-299.	1.9	34
20	HIV-1 Membrane-Proximal External Region Fused to Diphtheria Toxin Domain-A Elicits 4E10-Like Antibodies in Mice. Immunology Letters, 2019, 213, 30-38.	2.5	3
21	Disrupting LILRB4/APOE Interaction by an Efficacious Humanized Antibody Reverses T-cell Suppression and Blocks AML Development. Cancer Immunology Research, 2019, 7, 1244-1257.	3.4	51
22	Construction of a bacterial surface display system based on outer membrane protein F. Microbial Cell Factories, 2019, 18, 70.	4.0	16
23	Hepatitis E vaccine candidate harboring a non-particulate immunogen of E2 fused with CRM197 fragment A. Antiviral Research, 2019, 164, 154-161.	4.1	8
24	Characterization of native-like HIV-1 gp140 glycoprotein expressed in insect cells. Vaccine, 2019, 37, 1418-1427.	3.8	5
25	Viral neutralization by antibody-imposed physical disruption. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26933-26940.	7.1	9
26	Neutralization sites of human papillomavirus-6 relate to virus attachment and entry phase in viral infection. Emerging Microbes and Infections, 2019, 8, 1721-1733.	6.5	11
27	An IgM antibody targeting the receptor binding site of influenza B blocks viral infection with great breadth and potency. Theranostics, 2019, 9, 210-231.	10.0	37
28	Atomic structures of enterovirus D68 in complex with two monoclonal antibodies define distinct mechanisms of viral neutralization. Nature Microbiology, 2019, 4, 124-133.	13.3	40
29	Characterization of capsid protein (p495) of hepatitis E virus expressed in Escherichia coli and assembling into particles in vitro. Vaccine, 2018, 36, 2104-2111.	3.8	11
30	Identification of Strategic Residues at the Interface of Antigen–Antibody Interactions by In Silico Mutagenesis. Interdisciplinary Sciences, Computational Life Sciences, 2018, 10, 438-448.	3.6	6
31	Rational design of a triple-type human papillomavirus vaccine by compromising viral-type specificity. Nature Communications, 2018, 9, 5360.	12.8	25
32	Discovery and structural characterization of a therapeutic antibody against coxsackievirus A10. Science Advances, 2018, 4, eaat7459.	10.3	19
33	N-terminal truncations on L1 proteins of human papillomaviruses promote their soluble expression in <i>Escherichia coli</i> and self-assembly in vitro. Emerging Microbes and Infections, 2018, 7, 1-12.	6.5	17
34	Structural Basis for the Broad, Antibody-Mediated Neutralization of H5N1 Influenza Virus. Journal of Virology, 2018, 92, .	3.4	8
35	Stop codon mutagenesis for homogenous expression of human papillomavirus L1 protein in Escherichia coli. Protein Expression and Purification, 2017, 133, 110-120.	1.3	7
36	A novel combined vaccine based on monochimeric VLP co-displaying multiple conserved epitopes against enterovirus 71 and varicella-zoster virus. Vaccine, 2017, 35, 2728-2735.	3.8	18

Hai Yu

#	Article	IF	CITATIONS
37	Crystal Structures of Two Immune Complexes Identify Determinants for Viral Infectivity and Type-Specific Neutralization of Human Papillomavirus. MBio, 2017, 8, .	4.1	20
38	A multimechanistic antibody targeting the receptor binding site potently cross-protects against influenza B viruses. Science Translational Medicine, 2017, 9, .	12.4	65
39	Atomic structures of Coxsackievirus A6 and its complex with a neutralizing antibody. Nature Communications, 2017, 8, 505.	12.8	61
40	A shared N-terminal hydrophobic tail for the formation of nanoparticulates. Nanomedicine, 2016, 11, 2289-2303.	3.3	5
41	A novel inactivated enterovirus 71 vaccine can elicit cross-protective immunity against coxsackievirus A16 in mice. Vaccine, 2016, 34, 5938-5945.	3.8	12
42	The C-Terminal Arm of the Human Papillomavirus Major Capsid Protein Is Immunogenic and Involved in Virus-Host Interaction. Structure, 2016, 24, 874-885.	3.3	24
43	A Broadly Cross-protective Vaccine Presenting the Neighboring Epitopes within the VP1 GH Loop and VP2 EF Loop of Enterovirus 71. Scientific Reports, 2015, 5, 12973.	3.3	35
44	Identification of Broad-Genotype HPV L2 Neutralization Site for Pan-HPV Vaccine Development by a Cross-Neutralizing Antibody. PLoS ONE, 2015, 10, e0123944.	2.5	29
45	Molecular insights into the inhibition of HIV-1 infection using a CD4 domain-1-specific monoclonal antibody. Antiviral Research, 2015, 122, 101-111.	4.1	8
46	Protection against Lethal Enterovirus 71 Challenge in Mice by a Recombinant Vaccine Candidate Containing a Broadly Cross-Neutralizing Epitope within the VP2 EF Loop. Theranostics, 2014, 4, 498-513.	10.0	52
47	Bacteria expressed hepatitis E virus capsid proteins maintain virion-like epitopes. Vaccine, 2014, 32, 2859-2865.	3.8	36
48	An important amino acid in nucleoprotein contributes to influenza A virus replication by interacting with polymerase PB2. Virology, 2014, 464-465, 11-20.	2.4	8