
Masataka Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9137587/publications.pdf Version: 2024-02-01

Μλάλτλελ διιγιικί

#	Article	IF	CITATIONS
1	Armed Oncolytic Adenovirus–Expressing PD-L1 Mini-Body Enhances Antitumor Effects of Chimeric Antigen Receptor T Cells in Solid Tumors. Cancer Research, 2017, 77, 2040-2051.	0.9	170
2	Adenovirotherapy Delivering Cytokine and Checkpoint Inhibitor Augments CAR T Cells against Metastatic Head and Neck Cancer. Molecular Therapy, 2017, 25, 2440-2451.	8.2	151
3	Oncolytic Adenovirus Armed with BiTE, Cytokine, and Checkpoint Inhibitor Enables CAR T Cells to Control the Growth of Heterogeneous Tumors. Molecular Therapy, 2020, 28, 1251-1262.	8.2	89
4	Recent advances in oncolytic adenovirus therapies for cancer. Current Opinion in Virology, 2016, 21, 9-15.	5.4	77
5	Oncolytic Viruses Partner With T-Cell Therapy for Solid Tumor Treatment. Frontiers in Immunology, 2018, 9, 2103.	4.8	56
6	Immunology of Adenoviral Vectors in Cancer Therapy. Molecular Therapy - Methods and Clinical Development, 2019, 15, 418-429.	4.1	54
7	Clinical CAR-T Cell and Oncolytic Virotherapy for Cancer Treatment. Molecular Therapy, 2021, 29, 505-520.	8.2	48
8	Differential Type I Interferon-dependent Transgene Silencing of Helper-dependent Adenoviral vs. Adeno-associated Viral Vectors In Vivo. Molecular Therapy, 2013, 21, 796-805.	8.2	40
9	Large-Scale Production of High-Quality Helper-Dependent Adenoviral Vectors Using Adherent Cells in Cell Factories. Human Gene Therapy, 2010, 21, 120-126.	2.7	35
10	Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity. Molecular Therapy, 2021, 29, 1808-1820.	8.2	34
11	MyD88-Dependent Silencing of Transgene Expression During the Innate and Adaptive Immune Response to Helper-Dependent Adenovirus. Human Gene Therapy, 2010, 21, 325-336.	2.7	31
12	Mesenchymal Stromal Cells for Linked Delivery of Oncolytic and Apoptotic Adenoviruses to Non-small-cell Lung Cancers. Molecular Therapy, 2015, 23, 1497-1506.	8.2	28
13	Early STAT1 Activation After Systemic Delivery of HSV Amplicon Vectors Suppresses Transcription of The Vector-encoded Transgene. Molecular Therapy, 2007, 15, 2017-2026.	8.2	27
14	Capsid-Modified Adenoviral Vectors for Improved Muscle-Directed Gene Therapy. Human Gene Therapy, 2012, 23, 1065-1070.	2.7	25
15	Oncolytic adeno-immunotherapy modulates the immune system enabling CAR T-cells to cure pancreatic tumors. Communications Biology, 2021, 4, 368.	4.4	23
16	NOD2 Signaling Contributes to the Innate Immune Response Against Helper-Dependent Adenovirus Vectors Independently of MyD88 <i>In Vivo</i> . Human Gene Therapy, 2011, 22, 1071-1082.	2.7	22
17	Combinatorial treatment with oncolytic adenovirus and helper-dependent adenovirus augments adenoviral cancer gene therapy. Molecular Therapy - Oncolytics, 2014, 1, 14008.	4.4	19
18	Restoration of the serum level of SERPINF1 does not correct the bone phenotype in Serpinf1 null mice. Molecular Genetics and Metabolism, 2016, 117, 378-382.	1.1	12

MASATAKA SUZUKI

#	Article	IF	CITATIONS
19	Modeling the Efficacy of Oncolytic Adenoviruses In Vitro and In Vivo: Current and Future Perspectives. Cancers, 2020, 12, 619.	3.7	11
20	Engineering oncolytic vaccinia virus to redirect macrophages to tumor cells. Advances in Cell and Gene Therapy, 2021, 4, e99.	0.9	10
21	HydrAd: A Helper-Dependent Adenovirus Targeting Multiple Immune Pathways for Cancer Immunotherapy. Cancers, 2022, 14, 2769.	3.7	8
22	Current development in adenoviral vectors for cancer immunotherapy. Molecular Therapy - Oncolytics, 2021, 23, 571-581.	4.4	7
23	Partners in Crime: Combining Oncolytic Viroimmunotherapy with Other Therapies. Molecular Therapy, 2017, 25, 836-838.	8.2	4
24	Three Decades of Clinical Gene Therapy: From Experimental Technologies to Viable Treatments. Molecular Therapy, 2021, 29, 411-412.	8.2	4
25	Human epidermal growth factor receptor 2 expression in head and neck squamous cell carcinoma: Variation within and across primary tumor sites, and implications for antigenâ€specific immunotherapy. Head and Neck, 2021, 43, 1983-1994.	2.0	4
26	Adenovirus Immunity: X Marks the Spot. Molecular Therapy, 2012, 20, 2197-2198.	8.2	3
27	Feasibility of Applying Helper-Dependent Adenoviral Vectors for Cancer Immunotherapy. Biomedicines, 2014, 2, 110-131.	3.2	3
28	Self-Complementary AAV Vectors Cause a Substantially Heightened TLR9-Dependent Innate Immune Response In the Liver. Blood, 2010, 116, 252-252.	1.4	1