Karen L Wooley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9137572/publications.pdf Version: 2024-02-01

		2797	5384
360	32,181	94	164
papers	citations	h-index	g-index
201	201	201	22652
381	381	381	22652
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Design of polymeric nanoparticles for biomedical delivery applications. Chemical Society Reviews, 2012, 41, 2545.	18.7	1,441
2	Applications of Orthogonal "Click―Chemistries in the Synthesis of Functional Soft Materials. Chemical Reviews, 2009, 109, 5620-5686.	23.0	1,366
3	The Convergence of Synthetic Organic and Polymer Chemistries. Science, 2005, 309, 1200-1205.	6.0	1,239
4	Block Copolymer Assembly via Kinetic Control. Science, 2007, 317, 647-650.	6.0	969
5	Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chemical Society Reviews, 2006, 35, 1068.	18.7	868
6	Toroidal Triblock Copolymer Assemblies. Science, 2004, 306, 94-97.	6.0	740
7	Nanocages Derived from Shell Cross-Linked Micelle Templates. Journal of the American Chemical Society, 1999, 121, 3805-3806.	6.6	598
8	Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules, 1992, 25, 2401-2406.	2.2	541
9	Water-Soluble Knedel-like Structures:Â The Preparation of Shell-Cross-Linked Small Particles. Journal of the American Chemical Society, 1996, 118, 7239-7240.	6.6	516
10	Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. Journal of the Chemical Society Perkin Transactions 1, 1993, , 1287-1297.	0.9	463
11	The Antifouling and Fouling-Release Perfomance of Hyperbranched Fluoropolymer (HBFP)â^'Poly(ethylene glycol) (PEC) Composite Coatings Evaluated by Adsorption of Biomacromolecules and the Green Fouling AlgaUlva. Langmuir, 2005, 21, 3044-3053.	1.6	437
12	Polymeric Nanostructures for Imaging and Therapy. Chemical Reviews, 2015, 115, 10967-11011.	23.0	420
13	Shell Cross-Linked Nanoparticles Containing Hydrolytically Degradable, Crystalline Core Domains. Journal of the American Chemical Society, 2000, 122, 3642-3651.	6.6	406
14	Hyperbranched macromolecules via a novel double-stage convergent growth approach. Journal of the American Chemical Society, 1991, 113, 4252-4261.	6.6	372
15	Shell Cross-Linked Knedels:Â A Synthetic Study of the Factors Affecting the Dimensions and Properties of Amphiphilic Core-Shell Nanospheres. Journal of the American Chemical Society, 1997, 119, 6656-6665.	6.6	364
16	Cytokines as biomarkers of nanoparticle immunotoxicity. Chemical Society Reviews, 2013, 42, 5552.	18.7	326
17	Shell Click-Crosslinked (SCC) Nanoparticles:Â A New Methodology for Synthesis and Orthogonal Functionalization. Journal of the American Chemical Society, 2005, 127, 16892-16899.	6.6	314
18	Physical properties of dendritic macromolecules: a study of glass transition temperature. Macromolecules, 1993, 26, 1514-1519.	2.2	295

#	Article	IF	CITATIONS
19	Functionalization of Micelles and Shell Cross-linked Nanoparticles Using Click Chemistry. Chemistry of Materials, 2005, 17, 5976-5988.	3.2	246
20	Hydrogel-Coated Glassy Nanospheres:Â A Novel Method for the Synthesis of Shell Cross-Linked Knedels. Journal of the American Chemical Society, 1997, 119, 11653-11659.	6.6	245
21	Dendrimers Clicked Together Divergently. Macromolecules, 2005, 38, 5436-5443.	2.2	240
22	Facile syntheses of surface-functionalized micelles and shell cross-linked nanoparticles. Journal of Polymer Science Part A, 2006, 44, 5203-5217.	2.5	238
23	Solvatochromism as a probe of the microenvironment in dendritic polyethers: transition from an extended to a globular structure. Journal of the American Chemical Society, 1993, 115, 4375-4376.	6.6	232
24	Shell crosslinked polymer assemblies: Nanoscale constructs inspired from biological systems. , 2000, 38, 1397-1407.		228
25	Molecular Ball Bearings: The Unusual Melt Viscosity Behavior of Dendritic Macromolecules. Journal of the American Chemical Society, 1995, 117, 4409-4410.	6.6	226
26	Novel Polyether Copolymers Consisting of Linear and Dendritic Blocks. Angewandte Chemie International Edition in English, 1992, 31, 1200-1202.	4.4	221
27	Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters. Polymer, 1994, 35, 4489-4495.	1.8	217
28	An Assessment of the Effects of Shell Cross-Linked Nanoparticle Size, Core Composition, and Surface PEGylation on in Vivo Biodistribution. Biomacromolecules, 2005, 6, 2541-2554.	2.6	215
29	The preparation oft-butyl acrylate, methyl acrylate, and styrene block copolymers by atom transfer radical polymerization: Precursors to amphiphilic and hydrophilic block copolymers and conversion to complex nanostructured materials. Journal of Polymer Science Part A, 2000, 38, 4805-4820.	2.5	212
30	Tandem Synthesis of Coreâ~'Shell Brush Copolymers and Their Transformation to Peripherally Cross-Linked and Hollowed Nanostructures. Journal of the American Chemical Society, 2006, 128, 6808-6809.	6.6	209
31	Hyperbranched fluoropolymer and linear poly(ethylene glycol) based amphiphilic crosslinked networks as efficient antifouling coatings: An insight into the surface compositions, topographies, and morphologies. Journal of Polymer Science Part A, 2004, 42, 6193-6208.	2.5	206
32	Polypeptide organic radical batteries. Nature, 2021, 593, 61-66.	13.7	195
33	Fullerene-bound dendrimers: soluble, isolated carbon clusters. Journal of the American Chemical Society, 1993, 115, 9836-9837.	6.6	189
34	Determination of the Bioavailability of Biotin Conjugated onto Shell Cross-Linked (SCK) Nanoparticles. Journal of the American Chemical Society, 2004, 126, 6599-6607.	6.6	180
35	Shape Effects of Nanoparticles Conjugated with Cell-Penetrating Peptides (HIV Tat PTD) on CHO Cell Uptake. Bioconjugate Chemistry, 2008, 19, 1880-1887.	1.8	180
36	Improving Paclitaxel Delivery: <i>In Vitro</i> and <i>In Vivo</i> Characterization of PEGylated Polyphosphoester-Based Nanocarriers. Journal of the American Chemical Society, 2015, 137, 2056-2066.	6.6	176

#	Article	IF	CITATIONS
37	Triple-Shape Memory Polymers Based on Self-Complementary Hydrogen Bonding. Macromolecules, 2012, 45, 1062-1069.	2.2	175
38	Synthesis and properties of novel linear-dendritic block copolymers. Reactivity of dendritic macromolecules toward linear polymers. Macromolecules, 1993, 26, 5621-5627.	2.2	171
39	Dynamic Cylindrical Assembly of Triblock Copolymers by a Hierarchical Process of Covalent and Supramolecular Interactions. Journal of the American Chemical Society, 2011, 133, 1228-1231.	6.6	168
40	Folic acid-conjugated nanostructured materials designed for cancer cell targetingElectronic supplementary information (ESI) available: experimental details; selected plots and spectra. See http://www.rsc.org/suppdata/cc/b3/b307878g/. Chemical Communications, 2003, , 2400.	2.2	167
41	Facile Preparation of Nanoparticles by Intramolecular Cross-Linking of Isocyanate Functionalized Copolymers. Macromolecules, 2009, 42, 5629-5635.	2.2	166
42	Rapid and Versatile Construction of Diverse and Functional Nanostructures Derived from a Polyphosphoester-Based Biomimetic Block Copolymer System. Journal of the American Chemical Society, 2012, 134, 18467-18474.	6.6	165
43	Helix self-assembly through the coiling of cylindrical micelles. Soft Matter, 2008, 4, 90-93.	1.2	163
44	Fabrication of Hybrid Nanocapsules by Calcium Phosphate Mineralization of Shell Cross-Linked Polymer Micelles and Nanocages. Nano Letters, 2005, 5, 1457-1461.	4.5	151
45	Nanostructured Materials Designed for Cell Binding and Transduction. Biomacromolecules, 2001, 2, 362-368.	2.6	149
46	Synthesis and Characterization of Core–Shell Star Copolymers for In Vivo PET Imaging Applications. Biomacromolecules, 2008, 9, 1329-1339.	2.6	147
47	Research in Macromolecular Science: Challenges and Opportunities for the Next Decade. Macromolecules, 2009, 42, 465-471.	2.2	145
48	Unsymmetrical three-dimensional macromolecules: preparation and characterization of strongly dipolar dendritic macromolecules. Journal of the American Chemical Society, 1993, 115, 11496-11505.	6.6	144
49	Synthesis of Hetero-Grafted Amphiphilic Diblock Molecular Brushes and Their Self-Assembly in Aqueous Medium. Macromolecules, 2010, 43, 1182-1184.	2.2	144
50	Functionalized Micellar Assemblies Prepared via Block Copolymers Synthesized by Living Free Radical Polymerization upon Peptide-Loaded Resins. Biomacromolecules, 2005, 6, 220-228.	2.6	143
51	Fluorogenic 1,3-Dipolar Cycloaddition within the Hydrophobic Core of a Shell Cross-Linked Nanoparticle. Chemistry - A European Journal, 2006, 12, 6776-6786.	1.7	142
52	Absorbable hemostatic hydrogels comprising composites of sacrificial templates and honeycomb-like nanofibrous mats of chitosan. Nature Communications, 2019, 10, 2307.	5.8	141
53	Unique Toroidal Morphology from Composition and Sequence Control of Triblock Copolymers. Journal of the American Chemical Society, 2005, 127, 8592-8593.	6.6	140
54	Facile Synthesis of Clickable, Water-Soluble, and Degradable Polyphosphoesters. ACS Macro Letters, 2012, 1, 328-333.	2.3	140

4

#	Article	IF	CITATIONS
55	Shapes of Dendrimers from Rotational-Echo Double-Resonance NMR. Journal of the American Chemical Society, 1997, 119, 53-58.	6.6	139
56	Peptide-polymer bioconjugates: hybrid block copolymers generated via living radical polymerizations from resin-supported peptides. Chemical Communications, 2003, , 180-181.	2.2	139
57	One-Step Synthesis of Hyperbranched Polyesters. Molecular Weight Control and Chain End Functionalization. Polymer Journal, 1994, 26, 187-197.	1.3	138
58	The Advantages of Nanoparticles for PET. Journal of Nuclear Medicine, 2009, 50, 1743-1746.	2.8	138
59	The Importance of Chemistry in Creating Well-Defined Nanoscopic Embedded Therapeutics: Devices Capable of the Dual Functions of Imaging and Therapy. Accounts of Chemical Research, 2011, 44, 969-978.	7.6	135
60	Facile syntheses of cylindrical molecular brushes by a sequential RAFT and ROMP "graftingâ€ŧhrough― methodology. Journal of Polymer Science Part A, 2009, 47, 5557-5563.	2.5	133
61	Disk-cylinder and disk-sphere nanoparticles via a block copolymer blend solution construction. Nature Communications, 2013, 4, 2297.	5.8	132
62	A "Branched-Monomer Approach―for the Rapid Synthesis of Dendimers. Angewandte Chemie International Edition in English, 1994, 33, 82-85.	4.4	129
63	Poly(ethylene oxide)â€ <i>block</i> â€Polyphosphoesterâ€ <i>graft</i> â€Paclitaxel Conjugates with Acid‣abile Linkages as a pH‧ensitive and Functional Nanoscopic Platform for Paclitaxel Delivery. Advanced Healthcare Materials, 2014, 3, 441-448.	3.9	129
64	Copperâ€64â€Alloyed Gold Nanoparticles for Cancer Imaging: Improved Radiolabel Stability and Diagnostic Accuracy. Angewandte Chemie - International Edition, 2014, 53, 156-159.	7.2	129
65	Monomer design strategies to create natural product-based polymer materials. Natural Product Reports, 2017, 34, 433-459.	5.2	128
66	64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. Journal of Nuclear Medicine, 2005, 46, 1210-8.	2.8	128
67	Structural Effects on the Biodistribution and Positron Emission Tomography (PET) Imaging of Well-Defined ⁶⁴ Cu-Labeled Nanoparticles Comprised of Amphiphilic Block Graft Copolymers. Biomacromolecules, 2007, 8, 3126-3134.	2.6	125
68	Shell-crosslinked nanostructures from amphiphilic AB and ABA block copolymers of styrene-alt-(maleic anhydride) and styrene: polymerization, assembly and stabilization in one pot. Chemical Communications, 2005, , 3259.	2.2	122
69	Facile One-Pot Synthesis of Brush Polymers through Tandem Catalysis Using Grubbs' Catalyst for Both Ring-Opening Metathesis and Atom Transfer Radical Polymerizations. Nano Letters, 2006, 6, 1741-1746.	4.5	121
70	Robust Magnetic/Polymer Hybrid Nanoparticles Designed for Crude Oil Entrapment and Recovery in Aqueous Environments. ACS Nano, 2013, 7, 7552-7561.	7.3	121
71	Polymers with controlled molecular architecture: control of surface functionality in the synthesis of dendritic hyperbranched macromolecules using the convergent approach. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1059-1076.	0.9	117
72	Degradability of Poly(Lactic Acid)-Containing Nanoparticles: Enzymatic Access through a Cross-Linked Shell Barrier. Journal of the American Chemical Society, 2012, 134, 1235-1242.	6.6	117

#	Article	IF	CITATIONS
73	Polycarbonates Derived from Glucose via an Organocatalytic Approach. Journal of the American Chemical Society, 2013, 135, 6826-6829.	6.6	117
74	Poly(ethylene oxide)-block-polyphosphester-based paclitaxel conjugates as a platform for ultra-high paclitaxel-loaded multifunctional nanoparticles. Chemical Science, 2013, 4, 2122.	3.7	116
75	Amphiphilic and hydrophobic surface patterns generated from hyperbranched fluoropolymer/linear polymer networks: Minimally adhesive coatings via the crosslinking of hyperbranched fluoropolymers. Journal of Polymer Science Part A, 2003, 41, 3531-3540.	2.5	112
76	Disk Morphology and Disk-to-Cylinder Tunability of Poly(Acrylic Acid)-b-Poly(Methyl) Tj ETQq0 0 0 rgBT /Overloc	k 10 Tf 50 1.6	622 Td (Acryl
77	Amphiphilic Hyperbranched Fluoropolymers as Nanoscopic ¹⁹ F Magnetic Resonance Imaging Agent Assemblies. Biomacromolecules, 2008, 9, 2826-2833.	2.6	111
78	Neutron Reflectivity and Structure of Polyether Dendrimers as Langmuir Films. The Journal of Physical Chemistry, 1995, 99, 8283-8289.	2.9	109
79	Synthesis, Characterization, and Bioavailability of Mannosylated Shell Cross-Linked Nanoparticles. Biomacromolecules, 2004, 5, 903-913.	2.6	108
80	Nanoparticles with Tunable Internal Structure from Triblock Copolymers of PAA- <i>b</i> -PMA- <i>b</i> -PS. Nano Letters, 2008, 8, 2023-2026.	4.5	108
81	Comb Polymers Prepared by ATRP from Hydroxypropyl Cellulose. Biomacromolecules, 2007, 8, 1138-1148.	2.6	104
82	Nanoscopic Cylindrical Dual Concentric and Lengthwise Block Brush Terpolymers as Covalent Preassembled High-Resolution and High-Sensitivity Negative-Tone Photoresist Materials. Journal of the American Chemical Society, 2013, 135, 4203-4206.	6.6	104
83	Well-Defined Carbon Nanoparticles Prepared from Water-Soluble Shell Cross-linked Micelles that Contain Polyacrylonitrile Cores. Angewandte Chemie - International Edition, 2004, 43, 2783-2787.	7.2	103
84	A Facile Glovebox-Free Strategy To Significantly Accelerate the Syntheses of Well-Defined Polypeptides by <i>N</i> -Carboxyanhydride (NCA) Ring-Opening Polymerizations. Macromolecules, 2013, 46, 4223-4226.	2.2	103
85	Origins of toroidal micelle formation through charged triblock copolymer self-assembly. Soft Matter, 2009, 5, 1269-1278.	1.2	102
86	Dendritic fullerenes; a new approach to polymer modification of C60. Journal of the Chemical Society Chemical Communications, 1994, , 925-926.	2.0	101
87	Synthesis and Characterization of Hyperbranched Polycarbonates. Macromolecules, 1997, 30, 1890-1896.	2.2	100
88	Synthesis, Characterization, and Derivatization of Hyperbranched Polyfluorinated Polymers. Macromolecules, 1998, 31, 776-786.	2.2	99
89	Controlling Micellar Structure of Amphiphilic Charged Triblock Copolymers in Dilute Solution via Coassembly with Organic Counterions of Different Spacer Lengths. Macromolecules, 2006, 39, 6599-6607.	2.2	99
90	One-Pot Tandem Synthesis of a Coreâ^'Shell Brush Copolymer from Small Molecule Reactants by Ring-Opening Metathesis and Reversible Additionâ^'Fragmentation Chain Transfer (Co)polymerizations. Macromolecules, 2007, 40, 2289-2292.	2.2	99

#	Article	IF	CITATIONS
91	pH-Responsive Shell Cross-Linked Nanoparticles with Hydrolytically Labile Cross-Links. Macromolecules, 2008, 41, 6605-6607.	2.2	99
92	Amphiphilic core–shell nanospheres obtained by intramicellar shell crosslinking of polymer micelles with poly(ethylene oxide) linkers. Chemical Communications, 1998, , 1415-1416.	2.2	98
93	Cyclization in Hyperbranched Polymer Syntheses:Â Characterization by MALDI-TOF Mass Spectrometry. Journal of the American Chemical Society, 1998, 120, 10180-10186.	6.6	98
94	Synthesis and <i>In Vivo</i> Pharmacokinetic Evaluation of Degradable Shell Cross-Linked Polymer Nanoparticles with Poly(carboxybetaine) <i>versus</i> Poly(ethylene glycol) Surface-Grafted Coatings. ACS Nano, 2012, 6, 8970-8982.	7.3	98
95	Complex Amphiphilic Hyperbranched Fluoropolymers by Atom Transfer Radical Self-Condensing Vinyl (Co)polymerization. Macromolecules, 2007, 40, 4509-4515.	2.2	96
96	A Genetically Encoded Acrylamide Functionality. ACS Chemical Biology, 2013, 8, 1664-1670.	1.6	94
97	Chemical Design of Both a Glutathione-Sensitive Dimeric Drug Guest and a Glucose-Derived Nanocarrier Host to Achieve Enhanced Osteosarcoma Lung Metastatic Anticancer Selectivity. Journal of the American Chemical Society, 2018, 140, 1438-1446.	6.6	94
98	Two-Dimensional, Shell-Cross-linked Nanoparticle Arrays. Journal of the American Chemical Society, 2001, 123, 4627-4628.	6.6	90
99	Chemically induced supramolecular reorganization of triblock copolymer assemblies: Trapping of intermediate states via a shell-crosslinking methodology. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5058-5063.	3.3	89
100	Facile, Efficient Approach to Accomplish Tunable Chemistries and Variable Biodistributions for Shell Cross-Linked Nanoparticles. Biomacromolecules, 2008, 9, 1997-2006.	2.6	88
101	Preparation and <i>in Vitro</i> Antimicrobial Activity of Silver-Bearing Degradable Polymeric Nanoparticles of Polyphosphoester- <i>block</i> -Poly(<scp>l</scp> -lactide). ACS Nano, 2015, 9, 1995-2008.	7.3	84
102	Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 842-871.	3.3	84
103	Preparation of orthogonally-functionalized core Click cross-linked nanoparticles. New Journal of Chemistry, 2007, 31, 718-724.	1.4	83
104	Well-Defined Polymers Bearing Pendent Alkene Functionalities via Selective RAFT Polymerization. Macromolecules, 2008, 41, 9080-9089.	2.2	83
105	Strategies toward wellâ€defined polymer nanoparticles inspired by nature: Chemistry versus versatility. Journal of Polymer Science Part A, 2012, 50, 1869-1880.	2.5	83
106	Reversible Addition Fragmentation Chain Transfer Polymerization of 4-Vinylbenzaldehyde. Macromolecules, 2007, 40, 793-795.	2.2	79
107	¹⁹ F- and Fluorescently Labeled Micelles as Nanoscopic Assemblies for Chemotherapeutic Delivery. Bioconjugate Chemistry, 2008, 19, 2492-2498.	1.8	79
108	lsoprene polymerization <i>via</i> reversible addition fragmentation chain transfer polymerization. Journal of Polymer Science Part A, 2007, 45, 4100-4108.	2.5	77

#	Article	IF	CITATIONS
109	A Simple and Efficient Synthesis of an Acid-Labile Polyphosphoramidate by Organobase-Catalyzed Ring-Opening Polymerization and Transformation to Polyphosphoester Ionomers by Acid Treatment. Macromolecules, 2013, 46, 5141-5149.	2.2	77
110	Dendrimer and polystyrene surfactant structure at the air-water interface. The Journal of Physical Chemistry, 1993, 97, 293-294.	2.9	76
111	Environmentally-Responsive, Entirely Hydrophilic, Shell Cross-linked (SCK) Nanoparticles. Nano Letters, 2001, 1, 651-655.	4.5	76
112	Multicompartment Polymer Nanostructures with Ratiometric Dual-Emission pH-Sensitivity. Journal of the American Chemical Society, 2011, 133, 8534-8543.	6.6	76
113	Shell cross-linked polymer micelles: stabilized assemblies with great versatility and potential. Colloids and Surfaces B: Biointerfaces, 1999, 16, 45-54.	2.5	75
114	Nanoscale Cage-like Structures Derived from Polyisoprene-Containing Shell Cross-linked Nanoparticle Templates. Nano Letters, 2004, 4, 683-688.	4.5	74
115	Folateâ€mediated cell uptake of shellâ€crosslinked spheres and cylinders. Journal of Polymer Science Part A, 2008, 46, 7578-7583.	2.5	74
116	Well-Defined Vinyl Ketone-Based Polymers by Reversible Additionâ^'Fragmentation Chain Transfer Polymerization. Journal of the American Chemical Society, 2007, 129, 10086-10087.	6.6	73
117	Multicompartment and multigeometry nanoparticle assembly. Soft Matter, 2011, 7, 2500.	1.2	72
118	Endosomal escape and siRNA delivery with cationic shell crosslinked knedel-like nanoparticles with tunable buffering capacities. Biomaterials, 2012, 33, 8557-8568.	5.7	72
119	Hyperbranched Fluoropolymer-Polydimethylsiloxane-Poly(ethylene glycol) Cross-Linked Terpolymer Networks Designed for Marine and Biomedical Applications: Heterogeneous Nontoxic Antibiofouling Surfaces. ACS Applied Materials & Interfaces, 2014, 6, 19265-19274.	4.0	72
120	From Dendrimers to Knedelâ€ i ke Structures. Chemistry - A European Journal, 1997, 3, 1397-1399.	1.7	71
121	Diblock copolymers, micelles, and shell-crosslinked nanoparticles containing poly(4-fluorostyrene): Tools for detailed analyses of nanostructured materials. Journal of Polymer Science Part A, 2001, 39, 4152-4166.	2.5	71
122	Peptide-Derivatized Shell-Cross-Linked Nanoparticles. 1. Synthesis and Characterization. Bioconjugate Chemistry, 2004, 15, 699-709.	1.8	71
123	Bright fluorescent nanoparticles for developing potential optical imaging contrast agents. Nanoscale, 2010, 2, 548.	2.8	71
124	⁶⁴ Cu Core-Labeled Nanoparticles with High Specific Activity <i>via</i> Metal-Free Click Chemistry. ACS Nano, 2012, 6, 5209-5219.	7.3	71
125	Cold Nanoclusters Doped with ⁶⁴ Cu for CXCR4 Positron Emission Tomography Imaging of Breast Cancer and Metastasis. ACS Nano, 2016, 10, 5959-5970.	7.3	71
126	Strategies for Optimized Radiolabeling of Nanoparticles for <i>in vivo</i> PET Imaging. Advanced Materials, 2007, 19, 3157-3162.	11.1	68

#	Article	IF	CITATIONS
127	Hierarchical Assembly of Complex Block Copolymer Nanoparticles into Multicompartment Superstructures through Tunable Interparticle Associations. Advanced Functional Materials, 2013, 23, 1767-1773.	7.8	68
128	Fundamental design aspects of amphiphilic shell-crosslinked nanoparticles for controlled release applications. Chemical Communications, 2001, , 773-774.	2.2	67
129	Benzaldehyde-Functionalized Polymer Vesicles. ACS Nano, 2009, 3, 673-681.	7.3	66
130	A Processable Shape Memory Polymer System for Biomedical Applications. Advanced Healthcare Materials, 2015, 4, 1386-1398.	3.9	66
131	Hyperbranched fluorocopolymers by atom transfer radical self-condensing vinyl copolymerization. Journal of Polymer Science Part A, 2005, 43, 4754-4770.	2.5	65
132	ATRP from a Norbornenyl-Functionalized Initiator:Â Balancing of Complementary Reactivity for the Preparation of α-Norbornenyl Macromonomers/ω-Haloalkyl Macroinitiators. Macromolecules, 2005, 38, 9455-9465.	2.2	64
133	Hybrid Rigid/Soft and Biologic/Synthetic Materials: Polymers Grafted onto Cellulose Microcrystals. Biomacromolecules, 2011, 12, 1214-1223.	2.6	64
134	Development of a Vinyl Ether-Functionalized Polyphosphoester as a Template for Multiple Postpolymerization Conjugation Chemistries and Study of Core Degradable Polymeric Nanoparticles. Macromolecules, 2014, 47, 4634-4644.	2.2	64
135	Surface Charges and Shell Crosslinks Each Play Significant Roles in Mediating Degradation, Biofouling, Cytotoxicity and Immunotoxicity for Polyphosphoester-based Nanoparticles. Scientific Reports, 2013, 3, 3313.	1.6	63
136	Peptide-Derivatized Shell-Cross-Linked Nanoparticles. 2. Biocompatibility Evaluation. Bioconjugate Chemistry, 2004, 15, 710-717.	1.8	62
137	Degradable polyphosphoester-based silver-loaded nanoparticles as therapeutics for bacterial lung infections. Nanoscale, 2015, 7, 2265-2270.	2.8	62
138	Cationic shell-crosslinked knedel-like nanoparticles for highly efficient gene and oligonucleotide transfection of mammalian cells. Biomaterials, 2009, 30, 968-977.	5.7	61
139	Tuning core vs. shell dimensions to adjust the performance of nanoscopic containers for the loading and release of doxorubicin. Journal of Controlled Release, 2011, 152, 37-48.	4.8	61
140	Detection of Living Anionic Species in Polymerization Reactions Using Hyperpolarized NMR. Journal of the American Chemical Society, 2013, 135, 4636-4639.	6.6	60
141	Data Mining as a Guide for the Construction of Cross-Linked Nanoparticles with Low Immunotoxicity via Control of Polymer Chemistry and Supramolecular Assembly. Accounts of Chemical Research, 2015, 48, 1620-1630.	7.6	60
142	Solution and Surface Charge Properties of Shell Cross-Linked Knedel Nanoparticles. Macromolecules, 1999, 32, 3685-3689.	2.2	59
143	The preparation oft-butyl acrylate, methyl acrylate, and styrene block copolymers by atom transfer radical polymerization: Precursors to amphiphilic and hydrophilic block copolymers and conversion to complex nanostructured materials. Journal of Polymer Science Part A, 2000, 38, 4805-4820.	2.5	59
144	Multisite functionalized dendritic macromolecules prepared via metalation by superbases and reaction with electrophiles. Journal of the American Chemical Society, 1993, 115, 7043-7044.	6.6	58

#	Article	IF	CITATIONS
145	Packaging of DNA by shell crosslinked nanoparticles. Nucleic Acids Research, 1999, 27, 2966-2971.	6.5	58
146	Characterization of Poly(norbornene) Dendronized Polymers Prepared by Ring-Opening Metathesis Polymerization of Dendron Bearing Monomers. Macromolecules, 2006, 39, 7241-7249.	2.2	58
147	Hyperbranched Fluoropolymers and their Hybridization into Complex Amphiphilic Crosslinked Copolymer Networks. Macromolecular Chemistry and Physics, 2007, 208, 1676-1687.	1.1	58
148	Synthesis and Direct Visualization of Dumbbell-Shaped Molecular Brushes. ACS Macro Letters, 2012, 1, 241-245.	2.3	58
149	Unusual Mechanical Performance of Amphiphilic Crosslinked Polymer Networks. Journal of the American Chemical Society, 2007, 129, 506-507.	6.6	57
150	Orthogonally Dual-Clickable Janus Nanoparticles via a Cyclic Templating Strategy. Journal of the American Chemical Society, 2011, 133, 11046-11049.	6.6	54
151	Functional sugar-based polymers and nanostructures comprised of degradable poly(<scp>d</scp> -glucose carbonate)s. Polymer Chemistry, 2017, 8, 1699-1707.	1.9	54
152	Nanomedicine in management of hepatocellular carcinoma: Challenges and opportunities. International Journal of Cancer, 2017, 140, 1475-1484.	2.3	54
153	Facile syntheses of 4â€vinylâ€1,2,3â€triazole monomers by click azide/acetylene coupling. Journal of Polymer Science Part A, 2008, 46, 2897-2912.	2.5	53
154	<i>In Vitro</i> Efficacy of Paclitaxel-Loaded Dual-Responsive Shell Cross-Linked Polymer Nanoparticles Having Orthogonally Degradable Disulfide Cross-Linked Corona and Polyester Core Domains. Molecular Pharmaceutics, 2013, 10, 1092-1099.	2.3	53
155	Tunable mechano-responsive organogels by ring-opening copolymerizations of N-carboxyanhydrides. Chemical Science, 2014, 5, 141-150.	3.7	53
156	Shell Cross-Linked Nanoparticles Designed To Target Angiogenic Blood Vessels via αvβ3 Receptorâ^'Ligand Interactions. Macromolecules, 2004, 37, 7109-7115.	2.2	52
157	Noradrenaline-Functionalized Hyperbranched Fluoropolymer–Poly(ethylene glycol) Cross-Linked Networks As Dual-Mode, Anti-Biofouling Coatings. ACS Nano, 2012, 6, 1503-1512.	7.3	52
158	Organocatalyzed ROP of a Glucopyranoside Derived Five-Membered Cyclic Carbonate. Macromolecules, 2018, 51, 1787-1797.	2.2	52
159	Advancing the Development of Highly-Functionalizable Glucose-Based Polycarbonates by Tuning of the Glass Transition Temperature. Journal of the American Chemical Society, 2018, 140, 16053-16057.	6.6	52
160	Neuartige Polyethercopolymere mit einer linearen Zentraleinheit und dendritischen Endgruppen. Angewandte Chemie, 1992, 104, 1282-1285.	1.6	51
161	The Convergent Route to Globular Dendritic Macromolecules: A Versatile Approach to Precisely Functionauzed Three-Dimensional Polymers and Novel Block Copolymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 1994, 31, 1627-1645.	1.2	51
162	Facile Formation of Uniform Shellâ€Crosslinked Nanoparticles with Builtâ€in Functionalities from <i>N</i> â€Hydroxysuccinimideâ€Activated Amphiphilic Block Copolymers. Advanced Functional Materials, 2008, 18, 551-559.	7.8	50

#	Article	IF	CITATIONS
163	Structure-activity relationships of cationic shell-crosslinked knedel-like nanoparticles: Shell composition and transfection efficiency/cytotoxicity. Biomaterials, 2010, 31, 1805-1813.	5.7	50
164	Shell crosslinked nanoparticles carrying silver antimicrobials as therapeutics. Chemical Communications, 2010, 46, 121-123.	2.2	50
165	Thermal shaping of shell-crosslinked (SCK) nanoparticles, facilitated by nanoconfinement of fluid-like cores. Journal of Materials Chemistry, 2003, 13, 2785-2795.	6.7	49
166	Controlled Stacking of Charged Block Copolymer Micelles. Langmuir, 2007, 23, 4689-4694.	1.6	49
167	Synthesis of Coreâ€Crosslinked Nanoparticles with Controlled Cylindrical Shape and Narrowlyâ€Dispersed Size via Coreâ€Shell Brush Block Copolymer Templates. Advanced Materials, 2007, 19, 2830-2835.	11.1	49
168	Cationic Shell-Cross-Linked Knedel-like (cSCK) Nanoparticles for Highly Efficient PNA Delivery. Molecular Pharmaceutics, 2009, 6, 615-626.	2.3	48
169	Antigen-Decorated Shell Cross-Linked Nanoparticles:Â Synthesis, Characterization, and Antibody Interactions. Bioconjugate Chemistry, 2005, 16, 1246-1256.	1.8	46
170	Labeling of Polymer Nanostructures for Medical Imaging:Â Importance of Cross-Linking Extent, Spacer Length, and Charge Density. Macromolecules, 2007, 40, 2971-2973.	2.2	46
171	Stimuliâ€Triggered Sol–Gel Transitions of Polypeptides Derived from αâ€Amino Acid <i>N</i> arboxyanhydride (NCA) Polymerizations. Chemistry - an Asian Journal, 2016, 11, 437-447.	1.7	46
172	ATRP from an Amino Acid-Based Initiator:  A Facile Approach for α-Functionalized Polymers. Macromolecules, 2006, 39, 9661-9664.	2.2	45
173	Evaluation of Isoprene Chain Extension from PEO Macromolecular Chain Transfer Agents for the Preparation of Dual, Invertible Block Copolymer Nanoassemblies. Macromolecules, 2010, 43, 7128-7138.	2.2	45
174	Oneâ€pot, facile synthesis of wellâ€defined molecular brush copolymers by a tandem RAFT and ROMP, "Graftingâ€ŧhrough†strategy. Journal of Polymer Science Part A, 2012, 50, 1681-1688.	2.5	45
175	Hierarchically Assembled Theranostic Nanostructures for siRNA Delivery and Imaging Applications. Journal of the American Chemical Society, 2012, 134, 17362-17365.	6.6	44
176	Synthesis, Characterization, and In Vivo Efficacy of Shell Cross-Linked Nanoparticle Formulations Carrying Silver Antimicrobials as Aerosolized Therapeutics. ACS Nano, 2013, 7, 4977-4987.	7.3	44
177	Synthetic, Functional Thymidine-Derived Polydeoxyribonucleotide Analogues from a Six-Membered Cyclic Phosphoester. Journal of the American Chemical Society, 2017, 139, 5467-5473.	6.6	44
178	Hyperbranched aryl polycarbonates derived from A2B monomers versus AB2 monomers. Journal of Polymer Science Part A, 2002, 40, 823-835.	2.5	43
179	Perfluorocarbonâ€loaded shell crosslinked knedelâ€like nanoparticles: Lessons regarding polymer mobility and selfâ€assembly. Journal of Polymer Science Part A, 2009, 47, 1023-1037.	2.5	43
180	Multifunctional Hierarchically Assembled Nanostructures as Complex Stage-Wise Dual-Delivery Systems for Coincidental Yet Differential Trafficking of siRNA and Paclitaxel. Nano Letters, 2013, 13, 2172-2181.	4.5	43

#	Article	IF	CITATIONS
181	Shell crosslinked knedel-like nanoparticles for delivery of cisplatin: effects of crosslinking. Nanoscale, 2013, 5, 3220.	2.8	42
182	A Highâ€Performance Recycling Solution for Polystyrene Achieved by the Synthesis of Renewable Poly(thioether) Networks Derived from <scp>d</scp> ‣imonene. Advanced Materials, 2014, 26, 1552-1558.	11.1	42
183	Cycloalkenyl-Functionalized Polymers and Block Copolymers: Syntheses via Selective RAFT Polymerizations and Demonstration of Their Versatile Reactivity. Macromolecules, 2009, 42, 1565-1573.	2.2	41
184	Crystallization-driven assembly of fully degradable, natural product-based poly(l-lactide)-block-poly(α-d-glucose carbonate)s in aqueous solution. Polymer, 2017, 122, 270-279.	1.8	41
185	SCKs as nanoparticle carriers of doxorubicin: investigation of core composition on the loading, release and cytotoxicity profiles. Chemical Communications, 2008, , 3579.	2.2	40
186	Model Diels–Alder Studies for the Creation of Amphiphilic Cross-Linked Networks as Healable, Antibiofouling Coatings. ACS Macro Letters, 2012, 1, 473-477.	2.3	40
187	Regiochemical functionalization of a nanoscale cage-like structure: Robust core-shell nanostructures crafted as vessels for selective uptake and release of small and large guests. Journal of Controlled Release, 2005, 109, 189-202.	4.8	39
188	Complex amphiphilic networks derived from diamine-terminated poly(ethylene glycol) and benzylic chloride-functionalized hyperbranched fluoropolymers. Journal of Polymer Science Part A, 2006, 44, 4782-4794.	2.5	39
189	Dual Peptide Nucleic Acid- and Peptide-Functionalized Shell Cross-Linked Nanoparticles Designed to Target mRNA toward the Diagnosis and Treatment of Acute Lung Injury. Bioconjugate Chemistry, 2012, 23, 574-585.	1.8	39
190	Functional Polycarbonate of a <scp>d</scp> -Glucal-Derived Bicyclic Carbonate via Organocatalytic Ring-Opening Polymerization. ACS Macro Letters, 2017, 6, 748-753.	2.3	39
191	Influence of the structure of nanoscopic building blocks on the assembly of micropatterned surfaces. Journal of Polymer Science Part A, 2006, 44, 5218-5228.	2.5	38
192	Poly(<scp>d</scp> -glucose carbonate) Block Copolymers: A Platform for Natural Product-Based Nanomaterials with Solvothermatic Characteristics. Biomacromolecules, 2013, 14, 3346-3353.	2.6	38
193	Synthesis and Physical Properties of Thiol–Ene Networks Utilizing Plant-Derived Phenolic Acids. Macromolecules, 2015, 48, 8418-8427.	2.2	38
194	Thermally-Induced (Re)shaping of Coreâ^'Shell Nanocrystalline Particles. Nano Letters, 2002, 2, 1051-1054.	4.5	37
195	Nanodroplets of polyisoprene fluid contained within poly(acrylic acid-co-acrylamide) shells. Journal of Polymer Science Part A, 2003, 41, 1659-1668.	2.5	37
196	RAFTâ€Based Synthesis and Characterization of ABC versus ACB Triblock Copolymers Containing <i>tert</i> â€Butyl Acrylate, Isoprene, and Styrene Blocks. Macromolecular Chemistry and Physics, 2007, 208, 2481-2491.	1.1	37
197	Multigeometry Nanoparticles: Hybrid Vesicle/Cylinder Nanoparticles Constructed with Block Copolymer Solution Assembly and Kinetic Control. Macromolecules, 2015, 48, 5621-5631.	2.2	37
198	Two-Dimensional Controlled Syntheses of Polypeptide Molecular Brushes via <i>N</i> -Carboxyanhydride Ring-Opening Polymerization and Ring-Opening Metathesis Polymerization. ACS Macro Letters, 2017, 6, 1031-1035.	2.3	37

#	Article	IF	CITATIONS
199	Assessment of Copper Nanoclusters for Accurate in Vivo Tumor Imaging and Potential for Translation. ACS Applied Materials & amp; Interfaces, 2019, 11, 19669-19678.	4.0	37
200	Targeted surface nanocomplexity: two-dimensional control over the composition, physical properties and anti-biofouling performance of hyperbranched fluoropolymer–poly(ethylene glycol) amphiphilic crosslinked networks. Polymer Chemistry, 2012, 3, 3121.	1.9	36
201	Construction of a Reactive Diblock Copolymer, Polyphosphoester-block-Poly(l-lactide), as a Versatile Framework for Functional Materials That Are Capable of Full Degradation and Nanoscopic Assembly Formation. ACS Macro Letters, 2013, 2, 785-789.	2.3	36
202	InÂvivo fate tracking of degradable nanoparticles for lung gene transfer using PET and Ä^erenkov imaging. Biomaterials, 2016, 98, 53-63.	5.7	36
203	Local order in polycarbonate glasses by 13 C{19 F} rotational-echo double-resonance NMR. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2760-2775.	2.4	35
204	Design of Targeted Cardiovascular Molecular Imaging Probes. Journal of Nuclear Medicine, 2010, 51, 3S-17S.	2.8	35
205	Degradable Cationic Shell Cross-Linked Knedel-like Nanoparticles: Synthesis, Degradation, Nucleic Acid Binding, and <i>in Vitro</i> Evaluation. Biomacromolecules, 2013, 14, 1018-1027.	2.6	35
206	Harnessing the Chemical Diversity of the Natural Product Magnolol for the Synthesis of Renewable, Degradable Neolignan Thermosets with Tunable Thermomechanical Characteristics and Antioxidant Activity. Biomacromolecules, 2019, 20, 109-117.	2.6	35
207	Synthesis and Characterization of Degradable Poly(silyl ester)s. Macromolecules, 1998, 31, 15-21.	2.2	34
208	Sequential and Single-Step, One-Pot Strategies for the Transformation of Hydrolytically Degradable Polyesters into Multifunctional Systems. Macromolecules, 2008, 41, 1618-1626.	2.2	34
209	Differential immunotoxicities of poly(ethylene glycol)- vs. poly(carboxybetaine)-coated nanoparticles. Journal of Controlled Release, 2013, 172, 641-652.	4.8	34
210	Invoking Side-Chain Functionality for the Mediation of Regioselectivity during Ring-Opening Polymerization of Glucose Carbonates. Journal of the American Chemical Society, 2020, 142, 16974-16981.	6.6	34
211	Linear and Hyperbranched Poly(silyl ester)s:  Synthesis via Cross-Dehydrocoupling-Based Polymerization, Hydrolytic Degradation Properties, and Morphological Analysis by Atomic Force Microscopy. Macromolecules, 2001, 34, 3215-3223.	2.2	33
212	Poly(carbonate–amide)s Derived from Bio-Based Resources: Poly(ferulic acid- <i>co</i> -tyrosine). Macromolecules, 2014, 47, 2974-2983.	2.2	33
213	Thiol–Ene Elastomers Derived from Biobased Phenolic Acids with Varying Functionality. Macromolecules, 2016, 49, 7737-7748.	2.2	33
214	Thiol-functionalized shell crosslinked knedel-like (SCK) nanoparticles: a versatile entry for their conjugation with biomacromolecules. Tetrahedron, 2008, 64, 8543-8552.	1.0	32
215	PEGylation of cationic, shell-crosslinked-knedel-like nanoparticles modulates inflammation and enhances cellular uptake in the lung. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 912-922.	1.7	32
216	Responsive organogels formed by supramolecular self assembly of PEG-block-allyl-functionalized racemic polypeptides into β-sheet-driven polymeric ribbons. Soft Matter, 2013, 9, 5951.	1.2	32

#	Article	IF	CITATIONS
217	Multi-responsive hydrogels derived from the self-assembly of tethered allyl-functionalized racemic oligopeptides. Journal of Materials Chemistry B, 2014, 2, 8123-8130.	2.9	32
218	Multi-responsive polypeptide hydrogels derived from N-carboxyanhydride terpolymerizations for delivery of nonsteroidal anti-inflammatory drugs. Organic and Biomolecular Chemistry, 2017, 15, 5145-5154.	1.5	32
219	Location of Terminal Groups of Dendrimers in the Solid State by Rotational-Echo Double-Resonance NMR. Macromolecules, 2000, 33, 6214-6216.	2.2	31
220	Conformation of Intramolecularly Cross-Linked Polymer Nanoparticles on Solid Substrates. Nano Letters, 2005, 5, 1704-1709.	4.5	31
221	Unusual, Promoted Release of Guests from Amphiphilic Cross-Linked Polymer Networks. Journal of the American Chemical Society, 2005, 127, 11238-11239.	6.6	31
222	Complex, degradable polyester materials via ketoxime etherâ€based functionalization: Amphiphilic, multifunctional graft copolymers and their resulting solutionâ€state aggregates. Journal of Polymer Science Part A, 2010, 48, 3553-3563.	2.5	31
223	Rapidly-cured isosorbide-based cross-linked polycarbonate elastomers. Polymer Chemistry, 2016, 7, 2639-2644.	1.9	31
224	Syntheses of triblock bottlebrush polymers through sequential ROMPs: Expanding the functionalities of molecular brushes. Journal of Polymer Science Part A, 2017, 55, 2966-2970.	2.5	31
225	REDOR Determination of the Composition of Shell Cross-Linked Amphiphilic Coreâ^'Shell Nanoparticles and the Partitioning of Sequestered Fluorinated Guests. Macromolecules, 2001, 34, 547-551.	2.2	30
226	Well-defined Cationic Shell Crosslinked Nanoparticles for Efficient Delivery of DNA or Peptide Nucleic Acids. Proceedings of the American Thoracic Society, 2009, 6, 450-457.	3.5	30
227	Antibiofouling Hybrid Dendritic Boltorn/Star PEG Thiol-ene Cross-Linked Networks. ACS Applied Materials & Interfaces, 2011, 3, 2118-2129.	4.0	30
228	pH-Triggered reversible morphological inversion of orthogonally-addressable poly(3-acrylamidophenylboronic acid)-block-poly(acrylamidoethylamine) micelles and their shell crosslinked nanoparticles. Polymer Chemistry, 2012, 3, 3146.	1.9	30
229	Polyphosphoester nanoparticles as biodegradable platform for delivery of multiple drugs and siRNA. Drug Design, Development and Therapy, 2017, Volume11, 483-496.	2.0	30
230	Poly(silyl ester)s: A New Family of Hydrolytically-Degradable Polymers with Attunable Stabilities. Macromolecules, 1995, 28, 8887-8889.	2.2	29
231	Self-Reporting Degradable Fluorescent Grafted Copolymer Micelles Derived from Biorenewable Resources. ACS Macro Letters, 2015, 4, 645-650.	2.3	29
232	Functionalizable Hydrophilic Polycarbonate, Poly(5-methyl-5-(2-hydroxypropyl)aminocarbonyl-1,3-dioxan-2-one), Designed as a Degradable Alternative for PHPMA and PEG. Macromolecules, 2015, 48, 8797-8805.	2.2	29
233	Facile Synthesis of a Phosphorylcholine-Based Zwitterionic Amphiphilic Copolymer for Anti-Biofouling Coatings. ACS Macro Letters, 2015, 4, 505-510.	2.3	29
234	Investigation of intricate, amphiphilic crosslinked hyperbranched fluoropolymers as antiâ€icing coatings for extreme environments. Journal of Polymer Science Part A, 2016, 54, 238-244.	2.5	29

#	Article	IF	CITATIONS
235	Synthesis, characterization, and aqueous selfâ€assembly of amphiphilic poly(ethylene) Tj ETQq1 1 0.784314 rgBT	/Overlock 2.5	10 Tf 50 7 28
236	3487-3496. Four Different Regioisomeric Polycarbonates Derived from One Natural Product, <scp>d</scp> -Glucose. Macromolecules, 2016, 49, 7857-7867.	2.2	28
237	Morphologic Design of Silver-Bearing Sugar-Based Polymer Nanoparticles for Uroepithelial Cell Binding and Antimicrobial Delivery. Nano Letters, 2021, 21, 4990-4998.	4.5	28
238	Synthesis and Solution-state Assembly or Bulk State Thiol-ene Crosslinking of Pyrrolidinone- and Alkene-functionalized Amphiphilic Block Fluorocopolymers: From Functional Nanoparticles to Anti-fouling Coatings. Australian Journal of Chemistry, 2010, 63, 1159.	0.5	27
239	Synthesis, Characterization, and Crossâ€Linking Strategy of a Quercetinâ€Based Epoxidized Monomer as a Naturallyâ€Derived Replacement for BPA in Epoxy Resins. ChemSusChem, 2016, 9, 2135-2142.	3.6	27
240	Polyphosphoramidates That Undergo Acid-Triggered Backbone Degradation. ACS Macro Letters, 2017, 6, 219-223.	2.3	27
241	Hierarchical Inorganic–Organic Nanocomposites Possessing Amphiphilic and Morphological Complexities: Influence of Nanofiller Dispersion on Mechanical Performance. Advanced Functional Materials, 2008, 18, 2733-2744.	7.8	26
242	Photonic Shell rosslinked Nanoparticle Probes for Optical Imaging and Monitoring. Advanced Materials, 2009, 21, 1344-1348.	11.1	26
243	Influence of Nanostructure Morphology on Host Capacity and Kinetics of Guest Release. Small, 2011, 7, 1998-2003.	5.2	26
244	Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs. Journal of Materials Chemistry B, 2013, 1, 5241.	2.9	26
245	Verzweigte Monomere als Quelle für einen schnelleren Zugang zu Dendrimeren. Angewandte Chemie, 1994, 106, 123-126.	1.6	25
246	Synthesis, Characterization and Degradation of Poly(silyl ester)s. Macromolecules, 1998, 31, 7606-7612.	2.2	25
247	Location of Fluorotryptophan Sequestered in an Amphiphilic Nanoparticle by Rotational-Echo Double-Resonance NMR. Biophysical Journal, 1998, 75, 2574-2576.	0.2	25
248	Location of Cholic Acid Sequestered by Coreâ^'Shell Nanoparticles Using REDOR NMR. Macromolecules, 2001, 34, 544-546.	2.2	25
249	PNA-directed solution- and surface-assembly of shell crosslinked (SCK) nanoparticle conjugates. Soft Matter, 2005, 1, 69.	1.2	25
250	The Power of RAFT for Creating Polymers Having Imbedded Side-Chain Functionalities: Norbornenyl-Functionalized Polymers and their Transformations via ROMP and Thiol-ene Reactions. Australian Journal of Chemistry, 2009, 62, 1507.	0.5	25
251	Holistic Assessment of Covalently Labeled Core–Shell Polymeric Nanoparticles with Fluorescent Contrast Agents for Theranostic Applications. Langmuir, 2014, 30, 631-641.	1.6	25
252	Design and development of multifunctional polyphosphoester-based nanoparticles for ultrahigh paclitaxel dual loading. Nanoscale, 2017, 9, 15773-15777.	2.8	25

#	Article	IF	CITATIONS
253	Novel macromolecular architectures: Globular block copolymers containing dendritic components. Macromolecular Symposia, 1994, 77, 11-20.	0.4	24
254	Amphiphilic Cross-Linked Networks Produced from the Vulcanization of Nanodomains within Thin Films of Poly(N-vinylpyrrolidinone)-b-Poly(isoprene). Langmuir, 2009, 25, 9535-9544.	1.6	24
255	Polyphosphoesterâ€Based Cationic Nanoparticles Serendipitously Release Integral Biologicallyâ€Active Components to Serve as Novel Degradable Inducible Nitric Oxide Synthase Inhibitors. Advanced Materials, 2013, 25, 5609-5614.	11.1	24
256	Recyclable Hybrid Inorganic/Organic Magnetically Active Networks for the Sequestration of Crude Oil from Aqueous Environments. Chemistry of Materials, 2015, 27, 3775-3782.	3.2	24
257	Computational Reverse-Engineering Analysis for Scattering Experiments on Amphiphilic Block Polymer Solutions. Journal of the American Chemical Society, 2019, 141, 14916-14930.	6.6	24
258	<i>In Situ</i> Production of Ag/Polymer Asymmetric Nanoparticles via a Powerful Light-Driven Technique. Journal of the American Chemical Society, 2019, 141, 19542-19545.	6.6	24
259	Polydimethylsiloxane- (PDMS-) Grafted Fluorocopolymers by a "Grafting through―Strategy Based on Atom Transfer Radical (Co)polymerization. Macromolecules, 2007, 40, 7195-7207.	2.2	23
260	Synthesis and characterization of block copolymers containing poly(di(ethylene glycol) 2â€ethylhexyl) Tj ETQqC Polymer Science Part A, 2007, 45, 5420-5430.	0 0 rgBT 2.5	Overlock 10 ⁻ 23
261	Construction of a versatile and functional nanoparticle platform derived from a helical diblock copolypeptide-based biomimetic polymer. Polymer Chemistry, 2014, 5, 3977-3981.	1.9	23
262	Development of Fully Degradable Phosphonium-Functionalized Amphiphilic Diblock Copolymers for Nucleic Acids Delivery. Biomacromolecules, 2018, 19, 1212-1222.	2.6	23
263	Experiments and Simulations of Complex Sugar-Based Coilâ^Brush Block Polymer Nanoassemblies in Aqueous Solution. ACS Nano, 2019, 13, 5147-5162.	7.3	23
264	With a Grain of Salt: What Halite Has to Offer to Discussions on the Origin of Life. Astrobiology, 2006, 6, 625-643.	1.5	22
265	Cross-linked and functionalized polyester materials constructed using ketoxime ether linkages. Soft Matter, 2007, 3, 1032.	1.2	22
266	A fundamental investigation of cross-linking efficiencies within discrete nanostructures, using the cross-linker as a reporting molecule. Soft Matter, 2009, 5, 3422.	1.2	22
267	Aldehyde-functional polycarbonates as reactive platforms. Polymer Chemistry, 2014, 5, 3555-3558.	1.9	22
268	Minocycline and Silver Dual-Loaded Polyphosphoester-Based Nanoparticles for Treatment of Resistant <i>Pseudomonas aeruginosa</i> . Molecular Pharmaceutics, 2019, 16, 1606-1619.	2.3	22
269	Nanoscopic Confinement of Semi-Crystalline Polymers. Current Organic Chemistry, 2005, 9, 1053-1066.	0.9	21
270	A polarityâ€activation strategy for the high incorporation of 1â€alkenes into functional copolymers	2.5	21

#	Article	IF	CITATIONS
271	Investigating the pharmacokinetics and biological distribution of silverâ€loaded polyphosphoesterâ€based nanoparticles using ¹¹¹ Ag as a radiotracer. Journal of Labelled Compounds and Radiopharmaceuticals, 2015, 58, 234-241.	0.5	21
272	Toward the Optimization of Dinitrosyl Iron Complexes as Therapeutics for Smooth Muscle Cells. Molecular Pharmaceutics, 2019, 16, 3178-3187.	2.3	21
273	Geminal poly(silyl ester)s: Highly labile degradable polymers. , 1999, 37, 3606-3613.		20
274	Polycarbonates from the Polyhydroxy Natural Product Quinic Acid. Biomacromolecules, 2011, 12, 2512-2517.	2.6	20
275	Paclitaxel-Loaded SCK Nanoparticles: An Investigation of Loading Capacity and Cell Killing Abilities <i>in Vitro</i> . Molecular Pharmaceutics, 2012, 9, 2248-2255.	2.3	20
276	Directing Selfâ€Assembly of Nanoscopic Cylindrical Diblock Brush Terpolymers into Films with Desired Spatial Orientations: Expansion of Chemical Composition Scope. Macromolecular Rapid Communications, 2014, 35, 437-441.	2.0	20
277	Programmed hydrolysis of nanoassemblies by electrostatic interaction-mediated enzymatic-degradation. Chemical Communications, 2014, 50, 968-970.	2.2	20
278	Acid-Triggered Polymer Backbone Degradation and Disassembly to Achieve Release of Camptothecin from Functional Polyphosphoramidate Nanoparticles. ACS Macro Letters, 2018, 7, 783-788.	2.3	20
279	Construction of thermoresponsive SCKs through tuning the crystalline melting point of the core domain. Soft Matter, 2008, 4, 849.	1.2	19
280	Aqueous-only, pH-induced nanoassembly of dual pKa-driven contraphilic block copolymers. Chemical Communications, 2008, , 5339.	2.2	19
281	Photo-cross-linked Poly(thioether-co-carbonate) Networks Derived from the Natural Product Quinic Acid. ACS Applied Materials & Interfaces, 2014, 6, 17370-17375.	4.0	19
282	Regioisomeric Preference in Ring-Opening Polymerization of 3′,5′-Cyclic Phosphoesters of Functional Thymidine DNA Analogues. ACS Macro Letters, 2018, 7, 153-158.	2.3	19
283	Toward Cross-Linked Degradable Polyester Materials:Â Investigations into the Compatibility and Use of Reductive Amination Chemistry for Cross-Linking. Macromolecules, 2007, 40, 1480-1488.	2.2	18
284	Thiol-ene "click―networks from amphiphilic fluoropolymers: full synthesis and characterization of a benchmark anti-biofouling surface. Journal of Materials Chemistry, 2012, 22, 19462.	6.7	18
285	β-Cyclodextrin-Derived Monolithic, Hierarchically Porous Polyimides Designed for Versatile Molecular Separation Applications. Chemistry of Materials, 2018, 30, 6226-6230.	3.2	18
286	The investigation of a transsilylation reaction for the preparation of silyl esters: reactivity correlated with 29Si NMR resonance frequencies. Journal of Organometallic Chemistry, 1997, 542, 235-240.	0.8	17
287	Silyl Ether-Coupled Poly(ε-caprolactone)s with Stepwise Hydrolytic Degradation Profiles. Biomacromolecules, 2001, 2, 1206-1213.	2.6	17
288	Formation of nanogel aggregates by an amphiphilic cholesteryl-poly(amidoamine) dendrimer in aqueous media. Journal of Polymer Science Part A, 2007, 45, 2569-2575.	2.5	17

#	Article	IF	CITATIONS
289	A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems. Macromolecules, 2013, 46, 8905-8916.	2.2	17
290	Hierarchical Self-Assembly of Poly(<scp>d</scp> -glucose carbonate) Amphiphilic Block Copolymers in Mixed Solvents. Macromolecules, 2020, 53, 8581-8591.	2.2	17
291	Sustainable synthesis of CO ₂ -derived polycarbonates from <scp>d</scp> -xylose. Polymer Chemistry, 2021, 12, 5271-5278.	1.9	17
292	Kinetic investigation of the RAFT polymerization of <i>p</i> â€acetoxystyrene. Journal of Polymer Science Part A, 2010, 48, 2517-2524.	2.5	16
293	Tunable dual-emitting shell-crosslinked nano-objects as single-component ratiometric pH-sensing materials. Journal of Materials Chemistry, 2011, 21, 14193.	6.7	16
294	Imaging mRNA expression levels in living cells with PNA·DNA binary FRET probes delivered by cationic shell-crosslinked nanoparticles. Organic and Biomolecular Chemistry, 2013, 11, 3159.	1.5	16
295	Antisense peptide nucleic acid-functionalized cationic nanocomplex for <i>in vivo</i> mRNA detection. Interface Focus, 2013, 3, 20120059.	1.5	16
296	Poly(ferulic acid- <i>co</i> -tyrosine): Effect of the Regiochemistry on the Photophysical and Physical Properties en Route to Biomedical Applications. Macromolecules, 2014, 47, 7109-7117.	2.2	16
297	Synthesis of Poly(silyl ester)s via AB Monomer Systems. Macromolecules, 2000, 33, 734-742.	2.2	15
298	Novel polymers: Molecular to nanoscale order in three dimensions. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11147-11148.	3.3	14
299	Time-of-flight secondary ion mass spectrometry, fluorescence microscopy and scanning electron microscopy: Combined tools for monitoring the process of patterning and layer-by-layer assembly of synthetic and biological materials. Colloids and Surfaces B: Biointerfaces, 2008, 65, 85-91.	2.5	14
300	Examination of radioâ€opacity enhancing additives in shape memory polyurethane foams. Journal of Applied Polymer Science, 2015, 132, .	1.3	14
301	Imidazolium Salts as Small-Molecule Urinary Bladder Exfoliants in a Murine Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 5494-5502.	1.4	14
302	Dynamic Anti-Icing Coatings: Complex, Amphiphilic Hyperbranched Fluoropolymer Poly(ethylene) Tj ETQq0 0 0 rg Materials, 2016, 28, 5471-5479.	gBT /Overl 3.2	ock 10 Tf 50 1 14
303	A Tale of Drug-Carrier Optimization: Controlling Stimuli Sensitivity via Nanoparticle Hydrophobicity through Drug Loading. Nano Letters, 2020, 20, 6563-6571.	4.5	14
304	Polymerization of organized polymer assemblies. Current Opinion in Colloid and Interface Science, 1999, 4, 122-129.	3.4	13
305	Chain Packing in Linear Phenolâ^'Polycarbonate by13C{2H} REDOR. Macromolecules, 2002, 35, 2608-2617.	2.2	13
306	Design, synthesis, and characterization of linear fluorinated poly(benzyl ether)s: A comparison study with isomeric hyperbranched fluoropolymers. Journal of Materials Chemistry, 2005, 15, 5128.	6.7	13

#	Article	IF	CITATIONS
307	Two Distinct, Reactive Polymers Derived from a Single Norbornenylâ~'Methacryloyl Bifunctional Monomer by Selective ATRP or ROMP. Macromolecules, 2009, 42, 5433-5436.	2.2	13
308	What lies ahead. Nature, 2011, 469, 23-25.	13.7	13
309	Reversible photo-patterning of soft conductive materials via spatially-defined supramolecular assembly. Chemical Communications, 2016, 52, 8455-8458.	2.2	13
310	A novel in vitro metric predicts in vivo efficacy of inhaled silver-based antimicrobials in a murine Pseudomonas aeruginosa pneumonia model. Scientific Reports, 2018, 8, 6376.	1.6	13
311	A Vinyl Ether-Functional Polycarbonate as a Template for Multiple Postpolymerization Modifications. Macromolecules, 2018, 51, 3233-3242.	2.2	13
312	Functional, Degradable Zwitterionic Polyphosphoesters as Biocompatible Coating Materials for Metal Nanostructures. Langmuir, 2019, 35, 1503-1512.	1.6	13
313	The influence of solutionâ€state conditions and stirring rate on the assembly of poly(acrylic) Tj ETQq1 1 0.7843 2010, 48, 4465-4472.	14 rgBT /C 2.5)verlock 10 Tf 12
314	Imaging mRNA Expression in Live Cells via PNA·DNA Strand Displacement-Activated Probes. Journal of Nucleic Acids, 2012, 2012, 1-11.	0.8	12
315	Advanced photoresist technologies by intricate molecular brush architectures: Diblock brush terpolymerâ€based positiveâ€tone photoresist materials. Journal of Polymer Science Part A, 2015, 53, 193-199.	2.5	12
316	Enhanced Dielectric Strength and Capacitive Energy Density of Cyclic Polystyrene Films. ACS Polymers Au, 2022, 2, 324-332.	1.7	12
317	Porphyrin-crosslinked block copolymer assemblies as photophysically-active nanoscopic devices. Journal of Materials Chemistry, 2011, 21, 8983.	6.7	11
318	Bio-based polycarbonates derived from the neolignan honokiol. RSC Advances, 2016, 6, 81672-81679.	1.7	11
319	Reassessment of nanomaterials immunotoxicity. Nano Today, 2018, 20, 10-12.	6.2	11
320	Composite soft-matter nanoscale objects: Nanocylinder-templated assembly of nanospheres. Soft Matter, 2009, 5, 3585.	1.2	10
321	Synthetic Polymer Nanoparticles Conjugated with FimHA from E. coli Pili to Emulate the Bacterial Mode of Epithelial Internalization. Journal of the American Chemical Society, 2012, 134, 3938-3941.	6.6	10
322	Bottom-up/top-down, high-resolution, high-throughput lithography using vertically assembled block bottle brush polymers. Journal of Micro/ Nanolithography, MEMS, and MOEMS, 2013, 12, 043006.	1.0	10
323	Amphiphilic Cross-Linked Liquid Crystalline Fluoropolymer-Poly(ethylene glycol) Coatings for Application in Challenging Conditions: Comparative Study between Different Liquid Crystalline Comonomers and Polymer Architectures. ACS Applied Materials & Interfaces, 2016, 8, 33386-33393.	4.0	10
324	Degradable sugar-based magnetic hybrid nanoparticles for recovery of crude oil from aqueous environments. Polymer Chemistry, 2020, 11, 4895-4903.	1.9	10

#	Article	IF	CITATIONS
325	Morphologic design of sugar-based polymer nanoparticles for delivery of antidiabetic peptides. Journal of Controlled Release, 2021, 334, 1-10.	4.8	10
326	Topological Design of Highly Anisotropic Aligned Hole Transporting Molecular Bottlebrushes for Solution-Processed OLEDs. Journal of the American Chemical Society, 2022, 144, 8084-8095.	6.6	10
327	Co-assembly of sugar-based amphiphilic block polymers to achieve nanoparticles with tunable morphology, size, surface charge, and acid-responsive behavior. Materials Chemistry Frontiers, 2018, 2, 2230-2238.	3.2	9
328	Erythrocyte-Membrane-Camouflaged Nanocarriers with Tunable Paclitaxel Release Kinetics via Macromolecular Stereocomplexation. , 2020, 2, 595-601.		9
329	Synthesis of polycarbonates by a silicon-assisted alkoxy/carbonylimidazolide coupling reaction. , 1997, 35, 1133-1137.		7
330	Chain Packing in Ethoxyphenylâ^'Polycarbonate by13C{2H} REDOR. Macromolecules, 2002, 35, 2618-2623.	2.2	7
331	Crystallization of Poly(-caprolactone) under Nanoparticle Confinement. Helvetica Chimica Acta, 2002, 85, 3219-3224.	1.0	7
332	Magnetically-active Pickering emulsions stabilized by hybrid inorganic/organic networks. Soft Matter, 2016, 12, 9342-9354.	1.2	7
333	Effects of Glutathione and Histidine on NO Release from a Dimeric Dinitrosyl Iron Complex (DNIC). Inorganic Chemistry, 2020, 59, 16998-17008.	1.9	7
334	Complexities of Regioselective Ring-Opening vs Transcarbonylation-Driven Structural Metamorphosis during Organocatalytic Polymerizations of Five-Membered Cyclic Carbonate Glucose Monomers. Jacs Au, 2022, 2, 515-521.	3.6	7
335	Solidâ€State NMR Investigations of the Unusual Effects Resulting from the Nanoconfinement of Water within Amphiphilic Crosslinked Polymer Networks. Advanced Functional Materials, 2009, 19, 3404-3410.	7.8	6
336	Efficient Protection and Transfection of Small Interfering RNA by Cationic Shell-Crosslinked Knedel-Like Nanoparticles. Nucleic Acid Therapeutics, 2013, 23, 95-108.	2.0	6
337	Supramolecularly Knitted Tethered Oligopeptide/Singleâ€Walled Carbon Nanotube Organogels. Chemistry - A European Journal, 2014, 20, 8842-8847.	1.7	6
338	Multiplexing techniques for measurement of the immunomodulatory effects of particulate materials: Precautions when testing micro- and nano-particles. Methods, 2019, 158, 81-85.	1.9	6
339	Chain Dynamics in Linear and Hyperbranched Phenolâ^ Polycarbonates. Macromolecules, 2003, 36, 2368-2373.	2.2	5
340	Shell Cross-Linked Knedels: Amphiphilic Core-Shell Nanospheres with Unique Potential for Controlled Release Applications. ACS Symposium Series, 1998, , 165-175.	0.5	4
341	Theory-Guided Targeted Delivery of Nanoparticles in Advective Environmental Porous Media. Environmental Science and Technology Letters, 2019, 6, 617-623.	3.9	4
342	The convergent-growth approach to dendritic macromolecules. Advances in Dendritic Macromolecules, 1995, , 1-39.	0.6	4

0

#	Article	IF	CITATIONS
343	Dendrimers Clicked Together Divergently Volume 38, Number 13, June 28, 2005, pp 5436â^3443 Macromolecules, 2006, 39, 900-900.	2.2	3
344	Construction of nanostructures in aqueous solution from amphiphilic glucoseâ€derived polycarbonates. Journal of Polymer Science Part A, 2019, 57, 432-440.	2.5	3
345	Nanodomain analysis with cluster IMS: application to the characterization of macromolecular brush architecture. Surface and Interface Analysis, 2015, 47, 1051-1055.	0.8	2
346	Multiple analyte profiling (MAP) index as a powerful diagnostic and therapeutic monitoring tool. Methods, 2021, 190, 26-32.	1.9	2
347	Recycling: A Highâ€Performance Recycling Solution for Polystyrene Achieved by the Synthesis of Renewable Poly(thioether) Networks Derived from <scp>d</scp> â€Limonene (Adv. Mater. 10/2014). Advanced Materials, 2014, 26, 1551-1551.	11.1	1
348	The preparation of tâ€butyl acrylate, methyl acrylate, and styrene block copolymers by atom transfer radical polymerization: Precursors to amphiphilic and hydrophilic block copolymers and conversion to complex nanostructured materials. Journal of Polymer Science Part A, 2000, 38, 4805-4820.	2.5	1
349	Comments on ?Living Polymerization: Rationale for Uniform Terminology? by Darling et al , 2000, 38, 1751-1752.		0
350	Editorial announcement: DSM Performance Materials Award 2008 for Craig J. Hawker. Journal of Polymer Science Part A, 2008, 46, xxiv.	2.5	0
351	Editorial announcement: The 2007 SPSJ International Award of the Society of Polymer Science, Japan for Virgil Percec. Journal of Polymer Science Part A, 2008, 46, xxi-xxii.	2.5	0
352	Bottom-up/top-down high resolution, high throughput lithography using vertically assembled block bottle brush polymers. , 2013, , .		0
353	Core-Shell Nanoparticles for Biomedical Applications. Frontiers in Nanobiomedical Research, 2014, , 475-517.	0.1	0
354	Preparation of Degradable Polymeric Nanoparticles with Various Sizes and Surface Charges from Polycarbonate Block Copolymers. Macromolecular Research, 2019, 27, 1173-1178.	1.0	0
355	Investigation of segmental reorganization within amphiphilic block polymer nanoparticles derived from shell crosslinked micelle templates: Shell crosslinked knedelâ€kike inversion. Journal of Polymer Science, 2020, 58, 204-214.	2.0	0
356	Photonic Shell-Crosslinked Nanoparticle Probes for Optical Imaging and Monitoring. , 2008, , .		0
357	Nanomaterials and immune system. , 2022, , 65-114.		0
358	Data analysis and interpretation. , 2022, , 145-168.		0
359	Methods for evaluation of the immunomodulatory effects of nanoparticles. , 2022, , 115-127.		0

Precautions during evaluation of immunotoxicity of particulate materials., 2022, , 139-143.