
Akiyoshi Wada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9137180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interactions between a Tropical Cyclone and Upper-Tropospheric Cold-Core Lows Simulated by an Atmosphere-Wave-Ocean Coupled Model: A Case Study of Typhoon Jongdari (2018). Journal of the Meteorological Society of Japan, 2022, , .	1.8	4
2	Roles of Oceanic Mesoscale Eddy in Rapid Weakening of Typhoons Trami and Kong-Rey in 2018 Simulated with a 2-km-Mesh Atmosphere-Wave-Ocean Coupled Model. Journal of the Meteorological Society of Japan, 2021, 99, 1453-1482.	1.8	5
3	Increasing TCHP in the Western North Pacific and Its Influence on the Intensity of FAXAI and HAGIBIS in 2019. Scientific Online Letters on the Atmosphere, 2021, 17A, 29-32.	1.4	8
4	Comparison of the third-generation Japanese ocean flux data set J-OFURO3 with numerical simulations of Typhoon Dujuan (2015) traveling south of Okinawa. Journal of Oceanography, 2020, 76, 419-437.	1.7	3
5	Convective Bursts With Gravity Waves in Tropical Cyclones: Case Study With the Himawariâ€8 Satellite and Idealized Numerical Study. Geophysical Research Letters, 2020, 47, e2019GL086295.	4.0	7
6	The Relationship between Convective Bursts and Warm-Core Intensification in a Nonhydrostatic Simulation of Typhoon Lionrock (2016). Monthly Weather Review, 2019, 147, 1557-1579.	1.4	10
7	Effect of Airâ€6ea Environmental Conditions and Interfacial Processes on Extremely Intense Typhoon Haiyan (2013). Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,379.	3.3	17
8	Relation of Convective Bursts to Changes in the Intensity of Typhoon Lionrock (2016) during the Decay Phase Simulated by an Atmosphere-Wave-Ocean Coupled Model. Journal of the Meteorological Society of Japan, 2018, 96, 489-509.	1.8	8
9	Preliminary Test of a Data Assimilation System with a Regional High-Resolution Atmosphere–Ocean Coupled Model Based on an Ensemble Kalman Filter. Monthly Weather Review, 2017, 145, 565-581.	1.4	13
10	The role of oceanâ€atmosphere interaction in <scp>T</scp> yphoon <scp>S</scp> inlaku (2008) using a regional coupled data assimilation system. Journal of Geophysical Research: Oceans, 2017, 122, 3675-3695.	2.6	11
11	Global 7â€ ⁻ km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results. Geoscientific Model Development, 2017, 10, 1363-1381.	3.6	27
12	Reexamination of tropical cyclone heat potential in the western North Pacific. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6723-6744.	3.3	6
13	Sensitivity to Horizontal Resolution of the Simulated Intensifying Rate and Inner-Core Structure of Typhoon Ida, an Extremely Intense Typhoon. Journal of the Meteorological Society of Japan, 2016, 94A, 181-190.	1.8	20
14	Intensification of Typhoon Danas (1324) Captured by MTSAT Upper Tropospheric Atmospheric Motion Vectors. Scientific Online Letters on the Atmosphere, 2016, 12, 135-139.	1.4	6
15	Unusually rapid intensification of Typhoon Man-yi in 2013 under preexisting warm-water conditions near the Kuroshio front south of Japan. , 2016, , 131-156.		0
16	Verification of tropical cyclone heat potential for tropical cyclone intensity forecasting in the Western North Pacific. Journal of Oceanography, 2015, 71, 373-387.	1.7	20
17	Unusually rapid intensification of Typhoon Man-yi in 2013 under preexisting warm-water conditions near the Kuroshio front south of Japan. Journal of Oceanography, 2015, 71, 597-622.	1.7	10
18	Forecasting a Large Number of Tropical Cyclone Intensities around Japan Using a High-Resolution Atmosphere–Ocean Coupled Model. Weather and Forecasting, 2015, 30, 793-808.	1.4	45

Akiyoshi Wada

#	Article	IF	CITATIONS
19	Typhoon-induced sea surface cooling during the 2011 and 2012 typhoon seasons: observational evidence and numerical investigations of the sea surface cooling effect using typhoon simulations. Progress in Earth and Planetary Science, 2014, 1, 11.	3.0	40
20	Future Changes in Structures of Extremely Intense Tropical Cyclones Using a 2-km Mesh Nonhydrostatic Model. Journal of Climate, 2013, 26, 9986-10005.	3.2	33
21	Interactions between Typhoon Choi-wan (2009) and the Kuroshio Extension System. Advances in Meteorology, 2013, 2013, 1-17.	1.6	9
22	Numerical simulations of oceanic <i>p</i> CO ₂ variations and interactions between Typhoon Choiâ€wan (0914) and the ocean. Journal of Geophysical Research: Oceans, 2013, 118, 2667-2684.	2.6	15
23	Effect of planetary boundary layer schemes on the development of intense tropical cyclones using a cloudâ€resolving model. Journal of Geophysical Research, 2012, 117, .	3.3	26
24	Relationship of maximum tropical cyclone intensity to sea surface temperature and tropical cyclone heat potential in the North Pacific Ocean. Journal of Geophysical Research, 2012, 117, .	3.3	26
25	Detection of cyclone-induced rapid increases in chlorophyll- <i>a</i> with sea surface cooling in the northwestern Pacific Ocean from a MODIS/SeaWiFS merged satellite chlorophyll product. International Journal of Remote Sensing, 2011, 32, 9455-9471.	2.9	9
26	Carbon system changes in the East China Sea induced by Typhoons Tina and Winnie in 1997. Journal of Geophysical Research, 2011, 116, .	3.3	12
27	Impact of Wave-Ocean Interaction on Typhoon Hai-Tang in 2005. Scientific Online Letters on the Atmosphere, 2010, 6A, 13-16.	1.4	26
28	Impacts of Oceanic Preexisting Conditions on Predictions of Typhoon Hai-Tang in 2005. Advances in Meteorology, 2010, 2010, 1-15.	1.6	12
29	Roles of vertical turbulent mixing in the ocean response to Typhoon Rex (1998). Journal of Oceanography, 2009, 65, 373-396.	1.7	38
30	Idealized numerical experiments associated with the intensity and rapid intensification of stationary tropicalâ€cycloneâ€like vortex and its relation to initial seaâ€surface temperature and vortexâ€induced seaâ€surface cooling. Journal of Geophysical Research, 2009, 114, .	3.3	27
31	Comment on "Importance of preâ€existing oceanic conditions to upper ocean response induced by Super Typhoon Haiâ€Tang―by Z.â€W. Zheng, C.â€R. Ho, and N.â€J. Kuo. Geophysical Research Letters, 2009, 36, .	4.0	6
32	Importance of tropical cyclone heat potential for tropical cyclone intensity and intensification in the Western North Pacific. Journal of Oceanography, 2007, 63, 427-447.	1.7	102
33	Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: A review. Journal of Oceanography, 2007, 63, 721-744.	1.7	275
34	Numerical Problems Associated with Tropical Cyclone Intensity Prediction Using a Sophisticated Coupled Typhoon-Ocean Model. Papers in Meteorology and Geophysics, 2007, 58, 103-126.	0.9	8
35	Numerical Simulations of Sea Surface Cooling by a Mixed Layer Model during the Passage of Typhoon Rex. Journal of Oceanography, 2005, 61, 41-57.	1.7	30
36	The Processes of SST Cooling by Typhoon Passage and Case Study of Typhoon Rex with a Mixed layer Ocean Model Papers in Meteorology and Geophysics, 2002, 52, 31-66.	0.9	27

#	Article	IF	CITATIONS
37	Numerical Study on the Effect of the Ocean on Tropical-Cyclone Intensity and Structural Change. , 0, , \cdot		4