List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9136945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Advancements in Allâ€Vanadium Redox Flow Batteries. Advanced Materials Interfaces, 2016, 3, 1500309.	3.7	351
2	Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors. Journal of Power Sources, 2015, 295, 323-328.	7.8	180
3	Advanced Cathode Materials for Sodiumâ€lon Batteries: What Determines Our Choices?. Small Methods, 2017, 1, 1700098.	8.6	179
4	Fabrication of Bi2O3 AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances. Electrochimica Acta, 2014, 115, 518-524.	5.2	159
5	Research progress in Na-ion capacitors. Journal of Materials Chemistry A, 2016, 4, 7538-7548.	10.3	131
6	Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions. Journal of Power Sources, 2015, 274, 846-850.	7.8	97
7	Two-Dimensional Polymer Synthesized <i>via</i> Solid-State Polymerization for High-Performance Supercapacitors. ACS Nano, 2018, 12, 852-860.	14.6	91
8	Li-ion vs. Na-ion capacitors: A performance evaluation with coconut shell derived mesoporous carbon and natural plant based hard carbon. Chemical Engineering Journal, 2017, 316, 506-513.	12.7	90
9	A chemically bonded NaTi ₂ (PO ₄) ₃ /rGO microsphere composite as a high-rate insertion anode for sodium-ion capacitors. Journal of Materials Chemistry A, 2017, 5, 17506-17516.	10.3	80
10	Highly porous lithium-ion conducting solvent-free poly(vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 387 Td battery applications. Electrochimica Acta, 2013, 93, 230-235.	(fluoride-c 5.2	o-hexafluorop 79
11	Building next-generation supercapacitors with battery type Ni(OH) ₂ . Journal of Materials Chemistry A, 2021, 9, 15542-15585.	10.3	74
12	Highly mesoporous carbon from Teak wood sawdust as prospective electrode for the construction of high energy Li-ion capacitors. Electrochimica Acta, 2017, 228, 131-138.	5.2	66
13	Robust, Flexible, and Binder Free Highly Crystalline V ₂ O ₅ Thin Film Electrodes and Their Superior Supercapacitor Performances. ACS Sustainable Chemistry and Engineering, 2019, 7, 13115-13126.	6.7	63
14	Li-ion conduction on nanofiller incorporated PVdF-co-HFP based composite polymer blend electrolytes for flexible battery applications. Solid State Ionics, 2012, 218, 7-12.	2.7	59
15	Preparation and characterizations of PVAc/P(VdF-HFP)-based polymer blend electrolytes. Ionics, 2010, 16, 515-521.	2.4	54
16	Li-ion conduction in PVAc based polymer blend electrolytes for lithium battery applications. Materials Chemistry and Physics, 2011, 129, 471-476.	4.0	52
17	High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery. Journal of Power Sources, 2017, 362, 50-56.	7.8	42
18	New Zinc–Vanadium (Zn–V) Hybrid Redox Flow Battery: High-Voltage and Energy-Efficient Advanced Energy Storage System. ACS Sustainable Chemistry and Engineering, 2019, 7, 6053-6060.	6.7	42

#	Article	IF	CITATIONS
19	High performance zinc-bromine redox flow batteries: Role of various carbon felts and cell configurations. Journal of Energy Storage, 2018, 20, 134-139.	8.1	41
20	βâ€Co(OH) ₂ Nanosheets: A Superior Pseudocapacitive Electrode for Highâ€Energy Supercapacitors. Chemistry - an Asian Journal, 2017, 12, 2127-2133.	3.3	40
21	High energy Li-ion capacitors with conversion type Mn ₃ O ₄ particulates anchored to few layer graphene as the negative electrode. Journal of Materials Chemistry A, 2016, 4, 15134-15139.	10.3	39
22	Electrochemical behaviour of titanium/iridium(IV) oxide: Tantalum pentoxide andÂgraphite for application in vanadium redox flow battery. Journal of Power Sources, 2013, 238, 103-108.	7.8	38
23	Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl) Tj ETQq1 1 0.784 B: Solid-State Materials for Advanced Technology, 2014, 184, 26-33.	314 rgBT 3.5	/Overlock 10 37
24	Realizing highly efficient energy retention of Zn–Br2 redox flow battery using rGO supported 3D carbon network as a superior electrode. Journal of Power Sources, 2019, 438, 226998.	7.8	35
25	Ultralong Durability of Porous αâ€Fe ₂ O ₃ Nanofibers in Practical Liâ€Ion Configuration with LiMn ₂ O ₄ Cathode. Advanced Science, 2015, 2, 1500050.	11.2	34
26	Evaluation of lithium ion conduction in PAN/PMMA-based polymer blend electrolytes for Li-ion battery applications. Ionics, 2012, 18, 731-736.	2.4	32
27	Polymeric Nanomaterials Based on the Buckybowl Motif: Synthesis through Ring-Opening Metathesis Polymerization and Energy Storage Applications. ACS Macro Letters, 2017, 6, 1212-1216.	4.8	32
28	Highly active and stable heterogeneous catalysts based on the entrapment of noble metal nanoparticles in 3D ordered porous carbon. Carbon, 2016, 96, 75-82.	10.3	30
29	Waste-Driven Bio-Carbon Electrode Material for Na-Ion Storage Applications. ACS Sustainable Chemistry and Engineering, 2018, 6, 13915-13923.	6.7	30
30	Fabrication of New 2.4â€V Lithiumâ€lon Cell with Carbon oated LiTi ₂ (PO ₄) ₃ as the Cathode. ChemElectroChem, 2015, 2, 231-235.	3.4	28
31	Transport, structural and thermal studies on nanocomposite polymer blend electrolytes for Li-ion battery applications. Current Applied Physics, 2012, 12, 789-793.	2.4	27
32	Sâ€Ðoped TiSe ₂ Nanoplates/Fe ₃ O ₄ Nanoparticles Heterostructure. Small, 2017, 13, 1702181.	10.0	27
33	Photopolymerization of Diacetylene on Aligned Multiwall Carbon Nanotube Microfibers for High-Performance Energy Devices. ACS Applied Materials & Interfaces, 2016, 8, 32643-32648.	8.0	25
34	Effect of different salts on PVAc/PVdFâ€≺i>coâ€HFP based polymer blend electrolytes. Journal of Applied Polymer Science, 2010, 118, 646-651.	2.6	24
35	Novel Li-ion conduction on poly(vinyl acetate)-based hybrid polymer electrolytes with double plasticizers. Journal of Applied Electrochemistry, 2011, 41, 83-88.	2.9	24
36	Enhancement of Bromine Reversibility using Chemically Modified Electrodes and their Applications in Zinc Bromine Hybrid Redox Flow Batteries. ChemElectroChem, 2018, 5, 3411-3418.	3.4	24

#	Article	IF	CITATIONS
37	Conversion of uniform graphene oxide/polypyrrole composites into functionalized 3D carbon nanosheet frameworks with superior supercapacitive and sodium-ion storage properties. Journal of Power Sources, 2016, 307, 17-24.	7.8	23
38	Mn3O4 nanoparticles grown on surface activated graphite paper for aqueous asymmetric supercapacitors. Journal of Alloys and Compounds, 2018, 767, 141-150.	5.5	23
39	FT-IR and DSC studies of poly(vinylidene chloride-co-acrylonitrile) complexed with LiBF4. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 109, 105-109.	3.9	22
40	An Interwoven Network of MnO ₂ Nanowires and Carbon Nanotubes as the Anode for Bendable Lithiumâ€lon Batteries. ChemPhysChem, 2014, 15, 2445-2449.	2.1	22
41	Activated Carbonâ€Anchored 3D Carbon Network for Bromine Activity and its Enhanced Electrochemical Performance in Znâ^'Br ₂ Hybrid Redox Flow Battery. ChemElectroChem, 2019, 6, 5688-5697.	3.4	22
42	Investigations on new Fe–Mn redox couple based aqueous redox flow battery. Electrochimica Acta, 2020, 345, 136245.	5.2	22
43	Role of Different Plasticizers in Li-Ion Conducting Poly(Acrylonitrile)-Poly(Methyl Methacrylate) Hybrid Polymer Electrolyte. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 737-742.	3.4	21
44	High performance <i>in situ</i> annealed partially pressurized pulsed laser deposited WO ₃ & V ₂ O ₅ thin film electrodes for use as flexible all solid state supercapbatteries. Journal of Materials Chemistry A, 2020, 8, 24148-24165.	10.3	21
45	Low loading of Pt@Graphite felt for enhancing multifunctional activity towards achieving high energy efficiency of Zn–Br2 redox flow battery. Journal of Power Sources, 2021, 482, 228912.	7.8	21
46	Effect of Bromine Complexing Agents on the Performance of Cation Exchange Membranes in Secondâ€Generation Vanadium Bromide Battery. ChemPlusChem, 2015, 80, 376-381.	2.8	19
47	Solid Polymer Blend Electrolyte Based on Poly(ethylene oxide) and Poly(vinyl pyrrolidone) for Lithium Secondary Batteries. Brazilian Journal of Physics, 2015, 45, 19-27.	1.4	18
48	Fabrication of High Energy Li–Ion Capacitors from Orange Peel Derived Porous Carbon. ChemistrySelect, 2017, 2, 5051-5058.	1.5	17
49	Li ion conduction on plasticizer-added PVAc-based hybrid polymer electrolytes. Ionics, 2010, 16, 667-672.	2.4	16
50	Preparation of durable nanocatalyzed MEA for PEM fuel cell applications. Ionics, 2011, 17, 361-366.	2.4	15
51	Advances in membrane and stack design of redox flow batteries (RFBs) for medium- and large-scale energy storage. , 2015, , 477-507.		15
52	Studies on MWCNT-Incorporated Composite Polymer Electrolytes for Electrochemical Applications. Soft Materials, 2010, 8, 358-369.	1.7	14
53	Evaluation of impregnated nanocomposite membranes for aqueous methanol electrochemical reforming. Solid State Ionics, 2015, 283, 16-20.	2.7	14
54	Electrochemical analysis on poly(ethyl methacrylate)-based electrolyte membranes. Bulletin of Materials Science, 2015, 38, 151-156.	1.7	14

#	Article	IF	CITATIONS
55	Nanoionic transport and electric double layer formation at the electrode/polymer interface for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 23650-23658.	10.3	14
56	Fabrication and electrochemical characterization of Pt–Pd impregnated nanocomposite polymer electrolyte membranes for high concentration DMFCs. RSC Advances, 2015, 5, 981-987.	3.6	13
57	Exploring Anatase TiO ₂ Nanofibers as New Cathode for Constructing 1.6 V Class "Rockingâ€Chair―Type Liâ€Ion Cells. Particle and Particle Systems Characterization, 2016, 33, 306-310.	2.3	13
58	Carbon Nanotube Scaffolds Entrapped in a Gel Matrix for Realizing the Improved Cycle Life of Zinc Bromine Redox Flow Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48110-48118.	8.0	13
59	Investigations on New Electrolyte Composition and Modified Membrane for High Voltage Zincâ^'Manganese Hybrid Redox Flow Batteries. Batteries and Supercaps, 2021, 4, 1464-1472.	4.7	12
60	An optimistic approach on flow rate and supporting electrolyte for enhancing the performance characteristics of Zn-Br2 redox flow battery. Electrochimica Acta, 2021, 388, 138451.	5.2	12
61	Polysulfide diffusion controlled, non-shrinkable, porous, PAN/PES electrospun membrane for high energy Li-S battery application. Materials Today Energy, 2019, 12, 37-45.	4.7	11
62	Low cost bio-derived carbon-sprinkled manganese dioxide as an efficient sulfur host for lithium–sulfur batteries. RSC Advances, 2018, 8, 24261-24267.	3.6	10
63	Evaluation of platinum catalyzed MEAs for PEM fuel cell applications. Solid State Ionics, 2011, 190, 88-92.	2.7	9
64	Enhancement of Bromine Kinetics Using Pt@Graphite Felt and Its Applications in Zn-Br ₂ Redox Flow Battery. Journal of the Electrochemical Society, 2021, 168, 090566.	2.9	9
65	Development of nano-catalyzed membrane for PEM fuel cell applications. Journal of Solid State Electrochemistry, 2013, 17, 2917-2925.	2.5	8
66	Transformation of Spent Liâ€lon Battery in to High Energy Supercapacitors in Asymmetric Configuration. ChemElectroChem, 2019, 6, 5283-5292.	3.4	8
67	Modified viologen as an efficient anolyte for aqueous organic redox flow batteries. Materials Letters, 2022, 314, 131876.	2.6	8
68	Electrospun Carbon Nanofiber Sprinkled with Co 3 O 4 as an Efficient Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium. ChemistrySelect, 2019, 4, 5160-5167.	1.5	7
69	Electrodeposited partially oxidized Bi & NiCo alloy based thin films for aqueous hybrid high energy microcapacitor. Journal of Alloys and Compounds, 2021, 888, 161453.	5.5	7
70	Charge Transport, Mechanical and Storage Performances of Sepiolite Based Composite Polymer Electrolytes. ChemistrySelect, 2016, 1, 5821-5827.	1.5	6
71	FeS–ZnS Composite Nanosheets for Enhanced Lithium Storage Properties. ChemNanoMat, 2017, 3, 420-427.	2.8	6
72	Synthesis of Bendable Plasticized Nanocomposite Polymer Electrolyte Using Poly(Acrylonitrile)/Poly (Methyl Methacrylate) Polymer Blends. Zeitschrift Fur Physikalische Chemie, 2014, 228, 673-684.	2.8	4

#	Article	IF	CITATIONS
73	Graphene Quantum Dot beyond Electrocatalyst: An In Situ Electrolyte Catalyst towards Improved Reaction Kinetics of VO ²⁺ /VO ₂ ⁺ Redox Couples. Journal of the Electrochemical Society, 2020, 167, 140540.	2.9	4
74	Structural, Thermal, and Electrochemical Studies of Novel Li ₂ Co _{<i>x</i>} Mn _{1–<i>x</i>} (SO ₄) ₂ Bimetallic Sulfates. Journal of Physical Chemistry C, 2017, 121, 24971-24978.	3.1	3
75	Palladium―and Goldâ€Nanoparticleâ€Modified Porous Carbon as a Highâ€Power Anode for Lithiumâ€ŀon Batteries. ChemPhysChem, 2013, 14, 3887-3890.	2.1	2