
Takeshi Okuzono

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9136713/publications.pdf Version: 2024-02-01

TAKESHI OKUZONO

#	Article	IF	CITATIONS
1	Modeling microperforated panels and permeable membranes for a room acoustic solver with plane-wave enriched FEM. Applied Acoustics, 2022, 185, 108383.	1.7	5
2	A Parallel Dissipation-Free and Dispersion-Optimized Explicit Time-Domain FEM for Large-Scale Room Acoustics Simulation. Buildings, 2022, 12, 105.	1.4	9
3	On the Robustness and Efficiency of the Plane-Wave-Enriched FEM with Variable q-Approach on the 2D Room Acoustics Problem. Acoustics, 2022, 4, 53-73.	0.8	2
4	Pilot study on numerical prediction of sound reduction index of double window system: Comparison of finite element prediction method with measurement. Acoustical Science and Technology, 2022, 43, 32-42.	0.3	2
5	A Basic Study on the Absorption Properties and Their Prediction of Heterogeneous Micro-Perforated Panels: A Case Study of Micro-Perforated Panels with Heterogeneous Hole Size and Perforation Ratio. Acoustics, 2021, 3, 473-485.	0.8	6
6	An explicit time-domain FEM for acoustic simulation in rooms with frequency-dependent impedance boundary: Comparison of performance in 2D simulation with frequency-domain FEM. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2021, 263, 1120-1129.	0.1	0
7	Dissipation-free and dispersion-optimized explicit time-domain finite element method for room acoustic modeling. Acoustical Science and Technology, 2021, 42, 270-281.	0.3	3
8	Exploration of efficient numerical integration rule for wideband room-acoustics simulations by plane-wave-enriched finite-element method. Acoustical Science and Technology, 2021, 42, 231-240.	0.3	5
9	Efficiency of room acoustic simulations with time-domain FEM including frequency-dependent absorbing boundary conditions: Comparison with frequency-domain FEM. Applied Acoustics, 2021, 182, 108212.	1.7	11
10	Basic study of practical prediction of sound insulation performance of single-glazed window. Acoustical Science and Technology, 2021, 42, 350-353.	0.3	1
11	Implementation experiment of a honeycomb-backed MPP sound absorber in a meeting room. Applied Acoustics, 2020, 157, 107000.	1.7	27
12	The Effect of Deviation Due to the Manufacturing Accuracy in the Parameters of an MPP on Its Acoustic Properties: Trial Production of MPPs of Different Hole Shapes Using 3D Printing. Acoustics, 2020, 2, 605-616.	0.8	10
13	Potential of Room Acoustic Solver with Plane-Wave Enriched Finite Element Method. Applied Sciences (Switzerland), 2020, 10, 1969.	1.3	16
14	Experimental assessment of sound insulation performance of a double window with porous absorbent materials its cavity perimeter. Applied Acoustics, 2020, 165, 107317.	1.7	8
15	Time Domain Room Acoustic Solver with Fourth-Order Explicit FEM Using Modified Time Integration. Applied Sciences (Switzerland), 2020, 10, 3750.	1.3	7
16	Locally implicit time-domain finite element method for sound field analysis including permeable membrane sound absorbers. Acoustical Science and Technology, 2020, 41, 689-692.	0.3	2
17	Implementation of a frequency-dependent impedance boundary model into a room acoustic solver with time-domain finite element method. Acoustical Science and Technology, 2020, 41, 819-822.	0.3	4
18	Time-domain finite element formulation of porous sound absorbers based on an equivalent fluid model. Acoustical Science and Technology, 2020, 41, 837-840.	0.3	7

ΤΑΚΕSΗΙ ΟΚUZONO

#	Article	IF	CITATIONS
19	Application of Paper Folding Technique to Three-Dimensional Space Sound Absorber with Permeable Membrane: Case Studies of Trial Productions. , 2020, 25, 243-247.		4
20	Experimental comparison of absorption characteristics of single-leaf permeable membrane absorbers with different backing air cavity designs. Noise Control Engineering Journal, 2020, 68, 237-245.	0.2	11
21	Diffuse-field sound absorption characteristics of a spherical-microperforated space absorber. Acoustical Science and Technology, 2020, 41, 784-787.	0.3	6
22	Predicted Absorption Performance of Cylindrical and Rectangular Permeable Membrane Space Sound Absorbers Using the Three-Dimensional Boundary Element Method. Sustainability, 2019, 11, 2714.	1.6	8
23	Note on microperforated panel model using equivalent-fluid-based absorption elements. Acoustical Science and Technology, 2019, 40, 221-224.	0.3	12
24	A Basic Study on a Rectangular Plane Space Sound Absorber Using Permeable Membranes. Sustainability, 2019, 11, 2185.	1.6	11
25	A Pilot Study on the Sound Absorption Characteristics of Chicken Feathers as an Alternative Sustainable Acoustical Material. Sustainability, 2019, 11, 1476.	1.6	17
26	Predicting absorption characteristics of single-leaf permeable membrane absorbers using finite element method in a time domain. Applied Acoustics, 2019, 151, 172-182.	1.7	22
27	Basic study on relationship between airborne sound transmission and structure-borne sound radiation of a finite elastic plate. Acoustical Science and Technology, 2019, 40, 52-55.	0.3	1
28	Relationship between sound radiations resulting from airborne-sound and point-force excitations of a double-leaf infinite elastic plate. Acoustical Science and Technology, 2019, 40, 325-335.	0.3	0
29	A frequency domain finite element solver for acoustic simulations of 3D rooms with microperforated panel absorbers. Applied Acoustics, 2018, 129, 1-12.	1.7	30
30	Dispersion error reduction of absorption finite elements based on equivalent fluid model. Acoustical Science and Technology, 2018, 39, 362-365.	0.3	4
31	Numerically stable explicit time-domain finite element method for room acoustics simulation using an equivalent impedance model. Noise Control Engineering Journal, 2018, 66, 176-189.	0.2	7
32	Improved sound absorption performance of three-dimensional MPP space sound absorbers by filling with porous materials. Applied Acoustics, 2017, 116, 311-316.	1.7	25
33	Finite element analysis of absorption characteristics of permeable membrane absorbers array. Acoustical Science and Technology, 2017, 38, 322-325.	0.3	5
34	Relationship between sound radiation from sound-induced and force-excited vibration: Analysis using an infinite elastic plate model. Journal of the Acoustical Society of America, 2016, 140, 453-460.	0.5	3
35	A time-domain finite element model of permeable membrane absorbers. Acoustical Science and Technology, 2016, 37, 46-49.	0.3	4
36	An explicit time-domain finite element method for room acoustics simulations: Comparison of the performance with implicit methods. Applied Acoustics, 2016, 104, 76-84.	1.7	18

ΤΑΚΕSΗΙ ΟΚUZONO

#	Article	IF	CITATIONS
37	Distinct effects of moisture and air contents on acoustic properties of sandy soil. Journal of the Acoustical Society of America, 2015, 138, EL258-EL263.	0.5	9
38	Applicability of an explicit time-domain finite-element method on room acoustics simulation. Acoustical Science and Technology, 2015, 36, 377-380.	0.3	2
39	Room acoustics simulation with single-leaf microperforated panel absorber using two-dimensional finite-element method. Acoustical Science and Technology, 2015, 36, 358-361.	0.3	6
40	A finite-element formulation for room acoustics simulation with microperforated panel sound absorbing structures: Verification with electro-acoustical equivalent circuit theory and wave theory. Applied Acoustics, 2015, 95, 20-26.	1.7	16
41	On the Relationship between the Normal Incidence Airborne Sound-excited and the Structurally-excited Sound Radiation from a Wall: A Theoretical Trial with Simplified Models. Building Acoustics, 2015, 22, 109-122.	1.1	1
42	An experimental study on the absorption characteristics of a three-dimensional permeable membrane space sound absorber. Noise Control Engineering Journal, 2015, 63, 300-307.	0.2	7
43	A finite-element method using dispersion reduced spline elements for room acoustics simulation. Applied Acoustics, 2014, 79, 1-8.	1.7	36
44	Dispersion-reduced spline acoustic finite elements for frequency-domain analysis. Acoustical Science and Technology, 2013, 34, 221-224.	0.3	3
45	A Practical System to Predict the Absorption Coefficient, Dimension and Reverberation Time of Room using GLCM, DVP and Neural Network. International Journal of Automotive and Mechanical Engineering, 2013, 8, 1256-1266.	0.5	1
46	Application of modified integration rule to time-domain finite-element acoustic simulation of rooms. Journal of the Acoustical Society of America, 2012, 132, 804-813.	0.5	18
47	PRACTICAL SUBSYSTEMS TO IDENTIFY ROOM DIMENSIONS AND MATERIAL SURFACES USING PHOTOGRAPH IMAGES FOR ROOM ACOUSTIC SIMULATIONS. All Journal of Technology and Design, 2012, 18, 601-606.	0.1	0
48	Fundamental accuracy of time domain finite element method for sound-field analysis of rooms. Applied Acoustics, 2010, 71, 940-946.	1.7	35
49	SOUND FIELD ANALYSIS OF ROOMS BY TIME DOMAIN FINITE ELEMENT METHOD WITH AN ITERATIVE METHOD. Journal of Environmental Engineering (Japan), 2008, 73, 701-706.	0.1	2
50	Basic considerations on the practical method for predicting sound insulation performance of a single-leaf window. UCL Open Environment, 0, 2, .	0.0	2
51	Application of transparent microperforated panels to acrylic partitions for desktop use: A case study by prototyping. UCL Open Environment, 0, 2, .	0.0	0
52	Some considerations on the use of space sound absorbers with next-generation materials reflecting COVID situations in Japan: additional sound absorption for post-pandemic challenges in indoor acoustic environments. UCL Open Environment, 0, 2, .	0.0	4