Chilan Ngo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9136523/publications.pdf

Version: 2024-02-01

471509 395702 1,094 44 17 33 citations h-index g-index papers 45 45 45 2291 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	lridium-Based Nanowires as Highly Active, Oxygen Evolution Reaction Electrocatalysts. ACS Catalysis, 2018, 8, 2111-2120.	11.2	166
2	Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction. Journal of the Electrochemical Society, 2016, 163, F3105-F3112.	2.9	154
3	Carbon Capture by Metal Oxides: Unleashing the Potential of the (111) Facet. Journal of the American Chemical Society, 2018, 140, 4736-4742.	13.7	83
4	Platinum group metal-free electrocatalysts: Effects of synthesis on structure and performance in proton-exchange membrane fuel cell cathodes. Journal of Power Sources, 2017, 348, 30-39.	7.8	60
5	Exceptional Oxygen Reduction Reaction Activity and Durability of Platinum–Nickel Nanowires through Synthesis and Post-Treatment Optimization. ACS Omega, 2017, 2, 1408-1418.	3 . 5	53
6	Study of Lithium Silicide Nanoparticles as Anode Materials for Advanced Lithium Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 16071-16080.	8.0	47
7	Gram-scale wet chemical synthesis of wurtzite-8H nanoporous ZnS spheres with high photocatalytic activity. Applied Catalysis B: Environmental, 2011, 106, 212-219.	20.2	45
8	Role of Surface Chemistry on Catalyst/Ionomer Interactions for Transition Metal–Nitrogen–Carbon Electrocatalysts. ACS Applied Energy Materials, 2018, 1, 68-77.	5.1	44
9	Extensive Penetration of Evaporated Electrode Metals into Fullerene Films: Intercalated Metal Nanostructures and Influence on Device Architecture. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25247-25258.	8.0	40
10	Fuel Cell Performance Implications of Membrane Electrode Assembly Fabrication with Platinum-Nickel Nanowire Catalysts. Journal of the Electrochemical Society, 2018, 165, F238-F245.	2.9	39
11	Organometallic Complexes Anchored to Conductive Carbon for Electrocatalytic Oxidation of Methane at Low Temperature. Journal of the American Chemical Society, 2016, 138, 116-125.	13.7	34
12	The Roles of Oxide Growth and Sub-Surface Facets in Oxygen Evolution Activity of Iridium and Its Impact on Electrolysis. Journal of the Electrochemical Society, 2019, 166, F1243-F1252.	2.9	25
13	Palladium Intercalated into the Walls of Mesoporous Silica as Robust and Regenerable Catalysts for Hydrodeoxygenation of Phenolic Compounds. ACS Omega, 2018, 3, 7681-7691.	3.5	23
14	La and Al co-doped CaMnO3 perovskite oxides: From interplay of surface properties to anion exchange membrane fuel cell performance. Journal of Power Sources, 2018, 375, 265-276.	7.8	23
15	Strong Metal–Support Interactions of TiN– and TiO ₂ –Nickel Nanocomposite Catalysts. Journal of Physical Chemistry C, 2018, 122, 339-348.	3.1	22
16	Shape-directional growth of Pt and Pd nanoparticles. Nanoscale, 2014, 6, 11364-11371.	5 . 6	20
17	Characterizing Complex Gas–Solid Interfaces with in Situ Spectroscopy: Oxygen Adsorption Behavior on Fe–N–C Catalysts. Journal of Physical Chemistry C, 2020, 124, 16529-16543.	3.1	20
18	Platinum–Nickel Nanowires with Improved Hydrogen Evolution Performance in Anion Exchange Membrane-Based Electrolysis. ACS Catalysis, 2020, 10, 9953-9966.	11.2	19

#	Article	IF	CITATIONS
19	Effect of precursor flux on compositional evolution in InP1â^'xSbx nanowires grown via self-catalyzed vaporâ€"liquidâ€"solid process. Journal of Crystal Growth, 2011, 336, 14-19.	1.5	18
20	Iron Pyrite Nanocrystal Inks: Solvothermal Synthesis, Digestive Ripening, and Reaction Mechanism. Chemistry of Materials, 2014, 26, 6743-6751.	6.7	17
21	N-Bromosuccinimide-based bromination and subsequent functionalization of hydrogen-terminated silicon quantum dots. RSC Advances, 2014, 4, 51105-51110.	3.6	17
22	Characterization of Complex Interactions at the Gas–Solid Interface with in Situ Spectroscopy: The Case of Nitrogen-Functionalized Carbon. Journal of Physical Chemistry C, 2019, 123, 9074-9086.	3.1	17
23	Spectroscopic investigation of nitrogenâ€functionalized carbon materials. Surface and Interface Analysis, 2016, 48, 283-292.	1.8	16
24	Atomic layer deposition of TiO2 for stabilization of Pt nanoparticle oxygen reduction reaction catalysts. Journal of Applied Electrochemistry, 2018, 48, 973-984.	2.9	16
25	Synthesis of high surface area $CaxLa(1a^2x)Al(1a^2x)MnxO(3a^2l)$ perovskite oxides for oxygen reduction electrocatalysis in alkaline media. Catalysis Science and Technology, 2016, 6, 7744-7751.	4.1	12
26	2D and 3D Characterization of PtNi Nanowire Electrode Composition and Structure. ACS Applied Nano Materials, 2019, 2, 525-534.	5.0	10
27	Direct synthesis of Fe rich SBA-15†at low pH by in-situ formation of iron phosphate phase. Microporous and Mesoporous Materials, 2019, 276, 270-279.	4.4	10
28	<i>In situ $<$ /i> transmission electron microscopy studies of the kinetics of Pt-Mo alloy diffusion in ZrB2 thin films. Applied Physics Letters, 2013, 103, .	3.3	9
29	Kinetics of Ga droplet decay on thin carbon films. Applied Physics Letters, 2013, 102, .	3.3	9
30	Direct Conversion of Hydride- to Siloxane-Terminated Silicon Quantum Dots. Journal of Physical Chemistry C, 2016, 120, 25822-25831.	3.1	9
31	Extended Thin-Film Electrocatalyst Structures via Pt Atomic Layer Deposition. ACS Applied Nano Materials, 2018, 1, 6150-6158.	5.0	7
32	3D Atomic Understanding of Functionalized Carbon Nanostructures for Energy Applications. ACS Applied Nano Materials, 2020, 3, 1600-1611.	5.0	7
33	Iridium Nanowires As Highly Active, Oxygen Evolution Reaction Electrocatalysts. ECS Meeting Abstracts, 2017, , .	0.0	1
34	In situ Microscopy Studies of Liquid Gallium Droplet Dynamics. Microscopy and Microanalysis, 2014, 20, 1634-1635.	0.4	0
35	Model Nitrogen-Carbon and Iron-Nitrogen-Carbon Materials for Investigating the Oxygen Reduction Reaction. ECS Meeting Abstracts, 2017, , .	0.0	0
36	Development and Implementation of Catalysts and Membrane Electrode Assemblies Based on Extended Thin Film Electrocatalysts. ECS Meeting Abstracts, 2017, , .	0.0	0

#	Article	IF	CITATIONS
37	(Invited) The Growing Importance of Hydrogen in Our Energy System and Extended Surface Electrocatalyst Development and Implementation. ECS Meeting Abstracts, 2017, , .	0.0	0
38	Chemical and Structural Investigation of Pt-Ni Extended Surface Catalyst Electrodes. ECS Meeting Abstracts, $2017, \ldots$	0.0	0
39	Investigation of Model N-C and Fe-N-C Oxygen Reduction Catalysts Under in Situ Conditions. ECS Meeting Abstracts, 2017, , .	0.0	O
40	Understanding N-Functionalized Carbon-Based Catalysts and Supports Via Atom Probe Tomography and Electron Microscopy. ECS Meeting Abstracts, 2017, , .	0.0	0
41	Advances in Ptni Nanowire Extended Thin Film Electrocatalysts. ECS Meeting Abstracts, 2018, , .	0.0	O
42	Adsorption Behavior of PGM-Free Catalysts By Near-Ambient Pressure X-Ray Photoelectron Spectroscopy. ECS Meeting Abstracts, 2018, , .	0.0	0
43	Multiscale Characterization of N-Functionalized Carbon-Based Catalysts and Supports. ECS Meeting Abstracts, 2018, , .	0.0	0
44	Iridium and Iridium Oxide Performance in Electrolysis and Resolving Half- and Single-Cell Test Differences. ECS Meeting Abstracts, 2019, , .	0.0	0